Transport-Reaction Models Benedikt Geiger Born August 5 1998 in Gelnhausen

2025-05-06 0 0 2.41MB 121 页 10玖币
侵权投诉
Transport-Reaction Models
Benedikt Geiger
Born August 5, 1998 in Gelnhausen
August 16, 2021
Master’s Thesis Mathematics
Advisor: Dr. Christina Lienstromberg
Second Advisor: Prof. Dr. Juan J. L. Vel´azquez
Institut f¨
ur Angewandte Mathematik
Mathematisch-Naturwissenschaftliche Fakult¨
at der
Rheinischen Friedrich-Wilhelms-Universit¨
at Bonn
arXiv:2210.00416v1 [math.AP] 2 Oct 2022
At first, I would like to express my gratitude to my advisors Dr. Christina Lienstromberg and Prof.
Dr. Juan J. L. Vel´azquez. They always took time to provide guidance and feedback, which led to
many fruitful discussions.
I would also like to thank my parents and my sister. The intense work on my thesis during
the last months would not have been possible without their continuous support.
Contents
1. Introduction 4
1.1. Function Spaces and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. The Transport Semigroup 7
3. The Transport-Reaction Semigroup 16
4. Spectral Analysis of the Transport-Reaction Semigroup 27
4.1. Spectral Analysis of the Transport Semigroup . . . . . . . . . . . . . . . . . . . . . . 28
4.2. Spectral Analysis of the Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3. Weak Spectral Mapping Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5. Arbitrary Side Lengths and Neumann Boundary Conditions 48
5.1. ArbitrarySideLengths................................... 48
5.2. Symmetric Models with Neumann Boundary Conditions . . . . . . . . . . . . . . . . 49
6. Applications: Long-Time Behavior of Hyperbolic Models 54
6.1. AGoldstein-KacModel .................................. 54
6.2. ModelswithKilling .................................... 59
6.2.1. Positive and Mass Conserving Models with Killing . . . . . . . . . . . . . . . 61
6.3. A Reaction Random Walk System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7. Pattern Formation 68
7.1. Reaction-Diffusion Equations and Turing Patterns . . . . . . . . . . . . . . . . . . . 69
7.1.1. ReactionNetworks................................. 69
7.1.2. The Full Model and Diffusion-Driven Instabilities . . . . . . . . . . . . . . . . 70
7.2. Transport-Driven Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.1. Transport-Driven Instabilities for N=2..................... 85
7.3. Supplementary Figures and Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.3.1. Figures of The Spectrum for N=2........................ 87
7.3.2. Figures of The Spectrum for N=3........................ 90
7.3.3. A Simulation for N=3 .............................. 93
A. Postponed Proofs 100
B. C0-Semigroups, Generators and Abstract Cauchy Problems 106
C. Perturbation and Approximation of C0-Semigroups 111
D. Spectral Theory and Long-Term Behavior of C0-Semigroups 113
Bibliography 116
2
List of Figures
1. Domain Generator (W1,p: An Illustration of the Idea . . . . . . . . . . . . . . . . . 14
2. Typical Spectrum for N= 2.Example1......................... 87
3. Typical Spectrum for N= 2.Example2......................... 88
4. Hyperbolic Instabilities for N= 2.Example1...................... 88
5. Hyperbolic Instabilities for N= 2.Example2...................... 89
6. Eventually Constant Real Parts for N= 2.AnExample................ 89
7. Spectrum for N=3.AnExample ............................ 90
8. Hyperbolic Instabilities for N=3.AnExample..................... 91
9. Turing Patterns for N=3.Example1.......................... 91
10. Turing Patterns for N=3.Example2.......................... 92
11. Turing Patterns for N=3.Example3.......................... 92
12. Turing Patterns for N=3.Example4.......................... 93
13. A Simulation of Turing Patterns for N=3. ....................... 94
14. A Simulation of the Time Evolution of Turing Patterns . . . . . . . . . . . . . . . . 95
15. A Simulation of Hyperbolic Instabilities for N=3.................... 96
16. A Simulation of the Time Evolution of Hyperbolic Instabilities . . . . . . . . . . . . 97
3
摘要:

Transport-ReactionModelsBenediktGeigerBornAugust5,1998inGelnhausenAugust16,2021Master'sThesisMathematicsAdvisor:Dr.ChristinaLienstrombergSecondAdvisor:Prof.Dr.JuanJ.L.VelazquezInstitutfurAngewandteMathematikMathematisch-NaturwissenschaftlicheFakultatderRheinischenFriedrich-Wilhelms-UniversitatBo...

展开>> 收起<<
Transport-Reaction Models Benedikt Geiger Born August 5 1998 in Gelnhausen.pdf

共121页,预览5页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:121 页 大小:2.41MB 格式:PDF 时间:2025-05-06

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 121
客服
关注