Henry Smith Williams - A History of Science (volume 4)

VIP免费
2024-12-01 0 0 520.02KB 311 页 5.9玖币
侵权投诉
A HISTORY OF SCIENCE
BY HENRY SMITH WILLIAMS, M.D., LL.D.
ASSISTED BY EDWARD H. WILLIAMS, M.D.
IN FIVE VOLUMES
VOLUME IV.
MODERN DEVELOPMENT OF THE
CHEMICAL AND BIOLOGICAL SCIENCES
Get any book for free on: www.Abika.com
History of Science
Get any book for free on: www.Abika.com
2
A HISTORY OF SCIENCE
BOOK IV
MODERN DEVELOPMENT OF THE CHEMICAL AND BIOLOGICAL SCIENCES
AS regards chronology, the epoch covered in the present volume is
identical with that viewed in the preceding one. But now as
regards subject matter we pass on to those diverse phases of the
physical world which are the field of the chemist, and to those
yet more intricate processes which have to do with living
organisms. So radical are the changes here that we seem to be
entering new worlds; and yet, here as before, there are
intimations of the new discoveries away back in the Greek days.
The solution of the problem of respiration will remind us that
Anaxagoras half guessed the secret; and in those diversified
studies which tell us of the Daltonian atom in its wonderful
transmutations, we shall be reminded again of the Clazomenian
philosopher and his successor Democritus.
Yet we should press the analogy much too far were we to intimate
that the Greek of the elder day or any thinker of a more recent
period had penetrated, even in the vaguest way, all of the
mysteries that the nineteenth century has revealed in the fields
of chemistry and biology. At the very most the insight of those
great Greeks and of the wonderful seventeenth-century
philosophers who so often seemed on the verge of our later
discoveries did no more than vaguely anticipate their successors
of this later century. To gain an accurate, really specific
History of Science
Get any book for free on: www.Abika.com
3
knowledge of the properties of elementary bodies was reserved for
the chemists of a recent epoch. The vague Greek questionings as
to organic evolution were world-wide from the precise inductions
of a Darwin. If the mediaeval Arabian endeavored to dull the
knife of the surgeon with the use of drugs, his results hardly
merit to be termed even an anticipation of modern anaesthesia.
And when we speak of preventive medicine--of bacteriology in all
its phases--we have to do with a marvellous field of which no
previous generation of men had even the slightest inkling.
All in all, then, those that lie before us are perhaps the most
wonderful and the most fascinating of all the fields of science.
As the chapters of the preceding book carried us out into a
macrocosm of inconceivable magnitude, our present studies are to
reveal a microcosm of equally inconceivable smallness. As the
studies of the physicist attempted to reveal the very nature of
matter and of energy, we have now to seek the solution of the yet
more inscrutable problems of life and of mind.
I. THE PHLOGISTON THEORY IN CHEMISTRY
The development of the science of chemistry from the "science" of
alchemy is a striking example of the complete revolution in the
attitude of observers in the field of science. As has been
pointed out in a preceding chapter, the alchemist, having a
preconceived idea of how things should be, made all his
History of Science
Get any book for free on: www.Abika.com
4
experiments to prove his preconceived theory; while the chemist
reverses this attitude of mind and bases his conceptions on the
results of his laboratory experiments. In short, chemistry is
what alchemy never could be, an inductive science. But this
transition from one point of view to an exactly opposite one was
necessarily a very slow process. Ideas that have held undisputed
sway over the minds of succeeding generations for hundreds of
years cannot be overthrown in a moment, unless the agent of such
an overthrow be so obvious that it cannot be challenged. The
rudimentary chemistry that overthrew alchemy had nothing so
obvious and palpable.
The great first step was the substitution of the one principle,
phlogiston, for the three principles, salt, sulphur, and mercury.
We have seen how the experiment of burning or calcining such a
metal as lead "destroyed" the lead as such, leaving an entirely
different substance in its place, and how the original metal
could be restored by the addition of wheat to the calcined
product. To the alchemist this was "mortification" and
"revivification" of the metal. For, as pointed out by
Paracelsus, "anything that could be killed by man could also be
revivified by him, although this was not possible to the things
killed by God." The burning of such substances as wood, wax,
oil, etc., was also looked upon as the same "killing" process,
and the fact that the alchemist was unable to revivify them was
regarded as simply the lack of skill on his part, and in no wise
affecting the theory itself.
But the iconoclastic spirit, if not the acceptance of all the
History of Science
Get any book for free on: www.Abika.com
5
teachings, of the great Paracelsus had been gradually taking root
among the better class of alchemists, and about the middle of the
seventeenth century Robert Boyle (1626-1691) called attention to
the possibility of making a wrong deduction from the phenomenon
of the calcination of the metals, because of a very important
factor, the action of the air, which was generally overlooked.
And he urged his colleagues of the laboratories to give greater
heed to certain other phenomena that might pass unnoticed in the
ordinary calcinating process. In his work, The Sceptical Chemist,
he showed the reasons for doubting the threefold constitution of
matter; and in his General History of the Air advanced some novel
and carefully studied theories as to the composition of the
atmosphere. This was an important step, and although Boyle is not
directly responsible for the phlogiston theory, it is probable
that his experiments on the atmosphere influenced considerably
the real founders, Becker and Stahl.
Boyle gave very definitely his idea of how he thought air might
be composed. "I conjecture that the atmospherical air consists of
three different kinds of corpuscles," he says; "the first, those
numberless particles which, in the form of vapors or dry
exhalations, ascend from the earth, water, minerals, vegetables,
animals, etc.; in a word, whatever substances are elevated by the
celestial or subterraneal heat, and thence diffused into the
atmosphere. The second may be yet more subtle, and consist of
those exceedingly minute atoms, the magnetical effluvia of the
earth, with other innumerable particles sent out from the bodies
of the celestial luminaries, and causing, by their influence, the
摘要:

AHISTORYOFSCIENCEBYHENRYSMITHWILLIAMS,M.D.,LL.D.ASSISTEDBYEDWARDH.WILLIAMS,M.D.INFIVEVOLUMESVOLUMEIV.MODERNDEVELOPMENTOFTHECHEMICALANDBIOLOGICALSCIENCESGetanybookforfreeon:www.Abika.comHistoryofScienceGetanybookforfreeon:www.Abika.com2AHISTORYOFSCIENCEBOOKIVMODERNDEVELOPMENTOFTHECHEMICALANDBIOLOGICA...

展开>> 收起<<
Henry Smith Williams - A History of Science (volume 4).pdf

共311页,预览5页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:外语学习 价格:5.9玖币 属性:311 页 大小:520.02KB 格式:PDF 时间:2024-12-01

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 311
客服
关注