
strongly-augmented
weakly-augmented
CutMix
student
segmentation
network
teacher
segmentation
network
Linear predictor
Prototype-based
predictor
Linear predictor CutMix
<latexit sha1_base64="+PzAYLFhcCk74v43krDT/8goIas=">AAACz3icjVHLSsQwFD1T3+9RV+KmOAhuHFpdqBsZcOPSAWcUfJHWzFjsIySpMgwjbv0Bt/op/oX4B/oX3mQq+EA0pe3Jueec5CaBiCOlPe+l5AwMDg2PjI6NT0xOTc+UZ+eaKstlyBthFmfyMGCKx1HKGzrSMT8UkrMkiPlBcLlj6gdXXKooS/d1R/CThLXTqBWFTBN1LM7Uadd4meydlSte1bPD/Qn8AlRqC5tPQ9urwV5WfsYxzpEhRI4EHCk04RgMip4j+PAgiDtBlzhJKLJ1jh7GyZuTipOCEXtJ3zbNjgo2pbnJVNYd0ioxvZKcLpbJk5FOEjarubae22TD/pbdtZlmbx36B0VWQqzGBbF/+T6U//WZXjRa2LQ9RNSTsIzpLixScnsqZufup640JQjiDD6nuiQcWufHObvWo2zv5myZrb9apWHNPCy0Od7MLumC/e/X+RM016r+enWt7ldqW+iPUSxiCSt0nxuoYRd7aFC2wD0e8OjUnWvnxrntS51S4ZnHl+HcvQPK+Zah</latexit>
<latexit sha1_base64="+PzAYLFhcCk74v43krDT/8goIas=">AAACz3icjVHLSsQwFD1T3+9RV+KmOAhuHFpdqBsZcOPSAWcUfJHWzFjsIySpMgwjbv0Bt/op/oX4B/oX3mQq+EA0pe3Jueec5CaBiCOlPe+l5AwMDg2PjI6NT0xOTc+UZ+eaKstlyBthFmfyMGCKx1HKGzrSMT8UkrMkiPlBcLlj6gdXXKooS/d1R/CThLXTqBWFTBN1LM7Uadd4meydlSte1bPD/Qn8AlRqC5tPQ9urwV5WfsYxzpEhRI4EHCk04RgMip4j+PAgiDtBlzhJKLJ1jh7GyZuTipOCEXtJ3zbNjgo2pbnJVNYd0ioxvZKcLpbJk5FOEjarubae22TD/pbdtZlmbx36B0VWQqzGBbF/+T6U//WZXjRa2LQ9RNSTsIzpLixScnsqZufup640JQjiDD6nuiQcWufHObvWo2zv5myZrb9apWHNPCy0Od7MLumC/e/X+RM016r+enWt7ldqW+iPUSxiCSt0nxuoYRd7aFC2wD0e8OjUnWvnxrntS51S4ZnHl+HcvQPK+Zah</latexit>
<latexit sha1_base64="sQTbb+rBOO2hi9KPnbbwrwwn/DA=">AAAC4nicjVHJSsRAEH3GfR/1JCIEB0FBhkQP6m3Ai8cRHBdchk5PzxjMRqcjSBgQvHkTr/6AV/0Y8Q/0L6zuieCCaIUkr1/Ve93V5SWBnyrHeemxevv6BwaHhkdGx8YnJktT03tpnEku6jwOYnngsVQEfiTqyleBOEikYKEXiH3vfEvn9y+ETP042lWXiTgJWTvyWz5niqhGaT5o5Fx0lpJGepprEyY7K/bxGVP5YWe5USo7FceE/RO4BShXZ6+goxaXnnGMJmJwZAghEEERDsCQ0nMEFw4S4k6QEycJ+SYv0MEIaTOqElTBiD2nb5tWRwUb0Vp7pkbNaZeAXklKG4ukialOEta72SafGWfN/uadG099tkv6e4VXSKzCGbF/6T4q/6vTvSi0sGF68KmnxDC6O164ZOZW9MntT10pckiI07hJeUmYG+XHPdtGk5re9d0yk381lZrVa17UZnjTp6QBu9/H+RPsrVbctcrqjluubqIbQ5jDApZonuuoYhs11Mn7Gg94xJPVtG6sW+uuW2r1FJoZfAnr/h3+JZxE</latexit>
<latexit sha1_base64="sQTbb+rBOO2hi9KPnbbwrwwn/DA=">AAAC4nicjVHJSsRAEH3GfR/1JCIEB0FBhkQP6m3Ai8cRHBdchk5PzxjMRqcjSBgQvHkTr/6AV/0Y8Q/0L6zuieCCaIUkr1/Ve93V5SWBnyrHeemxevv6BwaHhkdGx8YnJktT03tpnEku6jwOYnngsVQEfiTqyleBOEikYKEXiH3vfEvn9y+ETP042lWXiTgJWTvyWz5niqhGaT5o5Fx0lpJGepprEyY7K/bxGVP5YWe5USo7FceE/RO4BShXZ6+goxaXnnGMJmJwZAghEEERDsCQ0nMEFw4S4k6QEycJ+SYv0MEIaTOqElTBiD2nb5tWRwUb0Vp7pkbNaZeAXklKG4ukialOEta72SafGWfN/uadG099tkv6e4VXSKzCGbF/6T4q/6vTvSi0sGF68KmnxDC6O164ZOZW9MntT10pckiI07hJeUmYG+XHPdtGk5re9d0yk381lZrVa17UZnjTp6QBu9/H+RPsrVbctcrqjluubqIbQ5jDApZonuuoYhs11Mn7Gg94xJPVtG6sW+uuW2r1FJoZfAnr/h3+JZxE</latexit>
<latexit sha1_base64="vHql9n+jHNd+TkB4xIwFezU/EfE=">AAAC1HicjVHLSsQwFD3W97vqStwUB8GNQ6sLdSMDblwqOKOg49BmohbbpiSpIKMrcesPuNX/8C/EP9C/8CZ2QB1EU9qenHvOTe69UZ7ESvv+a5/TPzA4NDwyOjY+MTk17c7MNpQoJON1JhIhD6NQ8STOeF3HOuGHueRhGiX8ILrYNvGDSy5VLLJ9fZXzZhqeZfFpzEJNVMudzlvqpJNLoYUJ37Tcil/17fJ6QVCCSm1+43lwayXaFe4LjtGGAEOBFBwZNOEEIRQ9RwjgIyeuiQ5xklBs4xw3GCNvQSpOipDYC/qe0e6oZDPam5zKuhmdktAryelhiTyCdJKwOc2z8cJmNuxvuTs2p7nbFf2jMldKrMY5sX/5usr/+kwtGqfYsDXEVFNuGVMdK7MUtivm5t6XqjRlyIkzuE1xSZhZZ7fPnvUoW7vpbWjjb1ZpWLNnpbbAu7klDTj4Oc5e0FitBmvV1b2gUtvE5xrBAhaxTPNcRw072EXdzvwBj3hyGs61c+vcfUqdvtIzh2/Luf8AZNKYaw==</latexit>
<latexit sha1_base64="vHql9n+jHNd+TkB4xIwFezU/EfE=">AAAC1HicjVHLSsQwFD3W97vqStwUB8GNQ6sLdSMDblwqOKOg49BmohbbpiSpIKMrcesPuNX/8C/EP9C/8CZ2QB1EU9qenHvOTe69UZ7ESvv+a5/TPzA4NDwyOjY+MTk17c7MNpQoJON1JhIhD6NQ8STOeF3HOuGHueRhGiX8ILrYNvGDSy5VLLJ9fZXzZhqeZfFpzEJNVMudzlvqpJNLoYUJ37Tcil/17fJ6QVCCSm1+43lwayXaFe4LjtGGAEOBFBwZNOEEIRQ9RwjgIyeuiQ5xklBs4xw3GCNvQSpOipDYC/qe0e6oZDPam5zKuhmdktAryelhiTyCdJKwOc2z8cJmNuxvuTs2p7nbFf2jMldKrMY5sX/5usr/+kwtGqfYsDXEVFNuGVMdK7MUtivm5t6XqjRlyIkzuE1xSZhZZ7fPnvUoW7vpbWjjb1ZpWLNnpbbAu7klDTj4Oc5e0FitBmvV1b2gUtvE5xrBAhaxTPNcRw072EXdzvwBj3hyGs61c+vcfUqdvtIzh2/Luf8AZNKYaw==</latexit>
<latexit sha1_base64="zv0GhwAKXa1l5xD1VuKyor66ES4=">AAAC5XicjVHLSsNAFD2N73fVlbgJFkFBSlIX6q7gxmUFqxUfJRmnbTDNhMlEkFBw5c6duPUH3OqviH+gf+GdMQUfiE5Icubcc87MnfHjMEiU47wUrIHBoeGR0bHxicmp6Zni7Nx+IlLJeJ2JUMiG7yU8DCJeV4EKeSOW3Ov6IT/wz7d1/eCCyyQQ0Z66jPlJ12tHQStgniKqWbTDZsZ4byVuJqdZLIUSWtVbs487nsoOe6vNYskpO2bYP4Gbg1J14Qp61ETxGcc4gwBDii44IijCITwk9BzBhYOYuBNkxElCgalz9DBO3pRUnBQesef0bdPsKGcjmuvMxLgZrRLSK8lpY5k8gnSSsF7NNvXUJGv2t+zMZOq9XdLfz7O6xCp0iP3L11f+16d7UWhh0/QQUE+xYXR3LE9JzanondufulKUEBOn8RnVJWFmnP1zto0nMb3rs/VM/dUoNavnLNemeNO7pAt2v1/nT7BfKbvr5cquW6pu4WOMYhFLWKH73EAVO6ihTtnXeMAjnqy2dWPdWncfUquQe+bxZVj37x1Pnd0=</latexit>
<latexit sha1_base64="zv0GhwAKXa1l5xD1VuKyor66ES4=">AAAC5XicjVHLSsNAFD2N73fVlbgJFkFBSlIX6q7gxmUFqxUfJRmnbTDNhMlEkFBw5c6duPUH3OqviH+gf+GdMQUfiE5Icubcc87MnfHjMEiU47wUrIHBoeGR0bHxicmp6Zni7Nx+IlLJeJ2JUMiG7yU8DCJeV4EKeSOW3Ov6IT/wz7d1/eCCyyQQ0Z66jPlJ12tHQStgniKqWbTDZsZ4byVuJqdZLIUSWtVbs487nsoOe6vNYskpO2bYP4Gbg1J14Qp61ETxGcc4gwBDii44IijCITwk9BzBhYOYuBNkxElCgalz9DBO3pRUnBQesef0bdPsKGcjmuvMxLgZrRLSK8lpY5k8gnSSsF7NNvXUJGv2t+zMZOq9XdLfz7O6xCp0iP3L11f+16d7UWhh0/QQUE+xYXR3LE9JzanondufulKUEBOn8RnVJWFmnP1zto0nMb3rs/VM/dUoNavnLNemeNO7pAt2v1/nT7BfKbvr5cquW6pu4WOMYhFLWKH73EAVO6ihTtnXeMAjnqy2dWPdWncfUquQe+bxZVj37x1Pnd0=</latexit>
<latexit sha1_base64="hkFVXn9trJCjyu88hKoXqzFK3LU=">AAACz3icjVHLSsQwFD1T3+9RV+KmOAhuHFpdqBsZcOPSAWcUfNHGzBjsI6SpMgwjbv0Bt/op/oX4B/oX3mQq+EA0pe3Jueec5CahjESmPe+l5AwMDg2PjI6NT0xOTc+UZ+eaWZorxhssjVJ1GAYZj0TCG1roiB9KxYM4jPhBeLlj6gdXXGUiTfZ1R/KTOGgnoiVYoIk6lmf6tGu8geqdlSte1bPD/Qn8AlRqC5tPQ9ur4V5afsYxzpGCIUcMjgSacIQAGT1H8OFBEneCLnGKkLB1jh7GyZuTipMiIPaSvm2aHRVsQnOTmVk3o1UiehU5XSyTJyWdImxWc209t8mG/S27azPN3jr0D4usmFiNC2L/8n0o/+szvWi0sGl7ENSTtIzpjhUpuT0Vs3P3U1eaEiRxBp9TXRFm1vlxzq71ZLZ3c7aBrb9apWHNnBXaHG9ml3TB/vfr/Amaa1V/vbpW9yu1LfTHKBaxhBW6zw3UsIs9NChb4h4PeHTqzrVz49z2pU6p8Mzjy3Du3gHNYpai</latexit>
<latexit sha1_base64="hkFVXn9trJCjyu88hKoXqzFK3LU=">AAACz3icjVHLSsQwFD1T3+9RV+KmOAhuHFpdqBsZcOPSAWcUfNHGzBjsI6SpMgwjbv0Bt/op/oX4B/oX3mQq+EA0pe3Jueec5CahjESmPe+l5AwMDg2PjI6NT0xOTc+UZ+eaWZorxhssjVJ1GAYZj0TCG1roiB9KxYM4jPhBeLlj6gdXXGUiTfZ1R/KTOGgnoiVYoIk6lmf6tGu8geqdlSte1bPD/Qn8AlRqC5tPQ9ur4V5afsYxzpGCIUcMjgSacIQAGT1H8OFBEneCLnGKkLB1jh7GyZuTipMiIPaSvm2aHRVsQnOTmVk3o1UiehU5XSyTJyWdImxWc209t8mG/S27azPN3jr0D4usmFiNC2L/8n0o/+szvWi0sGl7ENSTtIzpjhUpuT0Vs3P3U1eaEiRxBp9TXRFm1vlxzq71ZLZ3c7aBrb9apWHNnBXaHG9ml3TB/vfr/Amaa1V/vbpW9yu1LfTHKBaxhBW6zw3UsIs9NChb4h4PeHTqzrVz49z2pU6p8Mzjy3Du3gHNYpai</latexit>
<latexit sha1_base64="lQC4QzCPFGdhh6OYZgwQBeu9bYM=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwVRJdqCsLbly4qGAf0hZJptM2NE3CZCKU0J0/4FZ/xr8Q/0D/wjvTFNQiOiHJmXPPuTP3XjfyvVha1lvOWFhcWl7JrxbW1jc2t4rbO/U4TATjNRb6oWi6Tsx9L+A16UmfNyPBnZHr84Y7vFDxxj0XsRcGN3Ic8c7I6Qdez2OOJKrRHjgyvZ3cFUtW2dLLnAd2BkrnL9CrGhZf0UYXIRgSjMARQBL24SCmpwUbFiLiOkiJE4Q8HeeYoEDehFScFA6xQ/r2adfK2ID2Kmes3YxO8ekV5DRxQJ6QdIKwOs3U8URnVuxvuVOdU91tTH83yzUiVmJA7F++mfK/PlWLRA+nugaPaoo0o6pjWZZEd0Xd3PxSlaQMEXEKdykuCDPtnPXZ1J5Y16566+j4u1YqVu1Zpk3woW5JA7Z/jnMe1I/K9nH56NouVc6mk0Yee9jHIc3zBBVcooqarvIRT3g2rgxhjI10KjVymWcX35bx8AlYEZMi</latexit>
<latexit sha1_base64="lQC4QzCPFGdhh6OYZgwQBeu9bYM=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwVRJdqCsLbly4qGAf0hZJptM2NE3CZCKU0J0/4FZ/xr8Q/0D/wjvTFNQiOiHJmXPPuTP3XjfyvVha1lvOWFhcWl7JrxbW1jc2t4rbO/U4TATjNRb6oWi6Tsx9L+A16UmfNyPBnZHr84Y7vFDxxj0XsRcGN3Ic8c7I6Qdez2OOJKrRHjgyvZ3cFUtW2dLLnAd2BkrnL9CrGhZf0UYXIRgSjMARQBL24SCmpwUbFiLiOkiJE4Q8HeeYoEDehFScFA6xQ/r2adfK2ID2Kmes3YxO8ekV5DRxQJ6QdIKwOs3U8URnVuxvuVOdU91tTH83yzUiVmJA7F++mfK/PlWLRA+nugaPaoo0o6pjWZZEd0Xd3PxSlaQMEXEKdykuCDPtnPXZ1J5Y16566+j4u1YqVu1Zpk3woW5JA7Z/jnMe1I/K9nH56NouVc6mk0Yee9jHIc3zBBVcooqarvIRT3g2rgxhjI10KjVymWcX35bx8AlYEZMi</latexit>
<latexit sha1_base64="9ttsIPPKTq7x0WRVba6+Oo8FE6A=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkVwVRJdqCsLblxJBfuiLZKk0zp08iCZCKV06w+41X/xL8Q/0L/wzjQFtYhOSHLm3HvOzL3XjQRPpGW95YyFxaXllfxqYW19Y3OruL1TT8I09ljNC0UYN10nYYIHrCa5FKwZxczxXcEa7vBCxRv3LE54GNzIUcS6vjMIeJ97jiSq1ZFc9Ni4NbktlqyypZc5D+wMlM5foFc1LL6igx5CeEjhgyGAJCzgIKGnDRsWIuK6GBMXE+I6zjBBgbQpZTHKcIgd0ndAu3bGBrRXnolWe3SKoDcmpYkD0oSUFxNWp5k6nmpnxf7mPdae6m4j+ruZl0+sxB2xf+lmmf/VqVok+jjVNXCqKdKMqs7LXFLdFXVz80tVkhwi4hTuUTwm7GnlrM+m1iS6dtVbR8ffdaZi1d7LclN8qFvSgO2f45wH9aOyfVw+urZLlbPppJHHHvZxSPM8QQWXqKJG3j4e8YRn48qQxtiYTFONXKbZxbdlPHwCo/aUCw==</latexit>
<latexit sha1_base64="9ttsIPPKTq7x0WRVba6+Oo8FE6A=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkVwVRJdqCsLblxJBfuiLZKk0zp08iCZCKV06w+41X/xL8Q/0L/wzjQFtYhOSHLm3HvOzL3XjQRPpGW95YyFxaXllfxqYW19Y3OruL1TT8I09ljNC0UYN10nYYIHrCa5FKwZxczxXcEa7vBCxRv3LE54GNzIUcS6vjMIeJ97jiSq1ZFc9Ni4NbktlqyypZc5D+wMlM5foFc1LL6igx5CeEjhgyGAJCzgIKGnDRsWIuK6GBMXE+I6zjBBgbQpZTHKcIgd0ndAu3bGBrRXnolWe3SKoDcmpYkD0oSUFxNWp5k6nmpnxf7mPdae6m4j+ruZl0+sxB2xf+lmmf/VqVok+jjVNXCqKdKMqs7LXFLdFXVz80tVkhwi4hTuUTwm7GnlrM+m1iS6dtVbR8ffdaZi1d7LclN8qFvSgO2f45wH9aOyfVw+urZLlbPppJHHHvZxSPM8QQWXqKJG3j4e8YRn48qQxtiYTFONXKbZxbdlPHwCo/aUCw==</latexit>
Figure 1: Overview of our method. Our method is build upon the popular student-teacher frameworks
with CutMix operations. In addition to the existing modules in such a framework, we further introduce
a prototype-based predictor for the student model. The output
pprototype
s
of prototype-based predictor
will be supervised with the pseudo-label generated from the linear predictor of teacher model. Such
kind of consistency regularization will encourage the features from the same class to be closer than
the features of other classes and ease the difficulty of propagating label information from pixels to
pixels. This simple modification brings a significant improvement.
segmentation model from both the labeled and unlabeled images. We use
˜
Y
denote the segmentation
output and ˜
Y[a, b]indicates the output at the (a, b)coordinate.
Overview:
the overall structure of the proposed method is shown in Figure1, our approach is built
on top of the popular student-teacher framework for semi-supervised learning [
37
,
36
,
49
,
29
,
45
].
During the training procedure, the teacher model prediction will be selectively used as pseudo-labels
for supervising the student model. In other words, the back-propagation is performed on the student
model only. More specifically, the parameters of the teacher network are the exponential moving
average of the student network parameters [
37
]. Following the common practice [
36
], we also adopt
the weak-strong augmentation paradigm by feeding the teacher model weakly-augmented images and
the student strongly-augmented images. In the context of image segmentation, we take the normal
data augmentation (i.e., random crop and random horizontal flip of the input image) as the weak
augmentation and CutMix [44] as the strong data augmentation.
The key difference between our method and existing methods [
14
,
32
,
43
,
8
,
40
] is the use of
both a linear predictor (in both teacher and student models) and a prototype-based predictor (in
the student model only). As will be explained in the following section, the prediction from the
teacher model’s linear predictor will be used to create pseudo labels to supervise the training of the
prototype-based predictor of student model. This process acts as a regularization that could benefit
the label information propagation.
3.2 Prototype-based Predictor for Semantic Segmentation
Prototype-based classifier is a long-standing technique in machine learning [
22
,
4
]. From its early
form of the nearest neighbour classifier or the nearest mean classifier to prototypical networks in the
few-shot learning literature [
35
], its idea of using prototypes instead of a parameterized classifier has
been widely adopted in many fields. Very recently, prototype-based variety has been introduced into
the semantic segmentation task [
48
] and has been proved to be effective under a fully-supervised
setting. Formally, prototype-based classifier/predictors make the prediction by comparing test samples
with a set of prototypes. The prototype can be a sample feature or the average of a set of sample
features of the same class. Without loss of generality, we denote the prototype set as
P={(pi, yi)}
,
with
pi
indicate the prototype and
yi
is its associated class. Note that the number of prototypes could
be larger than the number of classes. In other words, one class can have multiple prototypes for
modelling its diversity. More formally, with the prototype set, the classification decision can be made
by using
˜y=yks.t. k = arg max
i
sim(x, pi),(1)
where
sim(·,·)
represents the similarity metric function, e.g., cosine distance.
˜y
means the class
assignment for the test data
x
. The posterior probability of assigning a sample to the
c
-th class can
3