Searches for Ultra-High-Energy Photons at the Pierre Auger Observatory The Pierre Auger Collaboration

2025-05-03 0 0 9.09MB 19 页 10玖币
侵权投诉
Searches for Ultra-High-Energy Photons
at the Pierre Auger Observatory
The Pierre Auger Collaboration
P. Abreu71, M. Aglietta53,51, I. Allekotte1, K. Almeida Cheminant69, A. Almela8,12, J. Alvarez-Mu˜niz78, J. Am-
merman Yebra78, G.A. Anastasi53,51 , L. Anchordoqui85 , B. Andrada8, S. Andringa71, C. Aramo49, P.R. Ara´ujo
Ferreira41, E. Arnone62,51, J. C. Arteaga Vel´azquez66, H. Asorey8, P. Assis71, G. Avila11, E. Avocone56,45,
A.M. Badescu74, A. Bakalova31 , A. Balaceanu72, F. Barbato44,45, J.A. Bellido13,68, C. Berat35, M.E. Bertaina62,51,
G. Bhatta69, P.L. Biermannf, V. Binet6, K. Bismark38,8, T. Bister41, J. Biteau36, J. Blazek31, C. Bleve35,
J. Bl¨umer40, M. Boh´aˇcoa31 , D. Boncioli56,45, C. Bonifazi9,25, L. Bonneau Arbeletche21, N. Borodai69, J. Brackg,
T. Bretz41, P.G. Brichetto Orchera8, F.L. Briechle41, P. Buchholz43, A. Bueno77, S. Buitink15, M. Buscemi46,60,
M. B¨usken38,8, A. Bwembya79,80, K.S. Caballero-Mora65, L. Caccianiga58,48, I. Caracas37, R. Caruso57,46,
A. Castellina53,51, F. Catalani18, G. Cataldi47, L. Cazon78, M. Cerda10, J.A. Chinellato21, J. Chudoba31,
L. Chytka32, R.W. Clay13, A.C. Cobos Cerutti7, R. Colalillo59,49, A. Coleman89, M.R. Coluccia47, R. Con-
cei¸ao71, A. Condorelli44,45, G. Consolati48,54 , F. Contreras11, F. Convenga40, D. Correia dos Santos27,
C.E. Covault83, M. Cristinziani43, S. Dasso5,3, K. Daumiller40, B.R. Dawson13, R.M. de Almeida27, J. de
Jes´us8,40, S.J. de Jong79,80, J.R.T. de Mello Neto25,26, I. De Mitri44,45 , J. de Oliveira17, D. de Oliveira
Franco21, F. de Palma55,47, V. de Souza19, E. De Vito55,47, A. Del Popolo57,46, O. Deligny33, L. Deval40,8, A. di
Matteo51, M. Dobre72, C. Dobrigkeit21, J.C. D’Olivo67, L.M. Domingues Mendes71, R.C. dos Anjos24, J. Ebr31,
M. Eman79,80, R. Engel38,40, I. Epicoco55,47, M. Erdmann41 , A. Etchegoyen8,12, H. Falcke79,81,80, J. Farmer88,
G. Farrar87, A.C. Fauth21, N. Fazzinid, F. Feldbusch39, F. Fenu62,51, B. Fick86, J.M. Figueira8, A. Filipˇciˇc76,75,
T. Fitoussi40, T. Fodran79, T. Fujii88,e, A. Fuster8,12, C. Galea79, C. Galelli58,48, B. Garc´ıa7, H. Gemmeke39,
F. Gesualdi8,40, A. Gherghel-Lascu72, P.L. Ghia33 , U. Giaccari79, M. Giammarchi48, J. Glombitza41, F. Gobbi10 ,
F. Gollan8, G. Golup1, M. G´omez Berisso1, P.F. G´omez Vitale11, J.P. Gongora11, J.M. Gonz´alez1, N. Gonz´alez14,
I. Goos1, D. G´ora69 , A. Gorgi53,51, M. Gottowik78, T.D. Grubb13, F. Guarino59,49 , G.P. Guedes22, E. Guido43,
S. Hahn40,8, P. Hamal31, M.R. Hampel8, P. Hansen4, D. Harari1, V.M. Harvey13, A. Haungs40, T. Hebbeker41,
D. Heck40, C. Hojvatd, J.R. H¨orandel79,80, P. Horvath32, M. Hrabovsk´y32 , T. Huege40,15, A. Insolia57,46,
P.G. Isar73, P. Janecek31, J.A. Johnsen84, J. Jurysek31, A. K¨ap¨a37 , K.H. Kampert37 , B. Keilhauer40,
A. Khakurdikar79, V.V. Kizakke Covilakam8,40, H.O. Klages40, M. Kleifges39, J. Kleinfeller10, F. Knapp38,
N. Kunka39, B.L. Lago16, N. Langner41, M.A. Leigui de Oliveira23, V. Lenok38, A. Letessier-Selvon34, I. Lhenry-
Yvon33, D. Lo Presti57,46, L. Lopes71, R. L´opez63, L. Lu90 , Q. Luce38 , J.P. Lundquist75 , A. Machado Payeras21,
G. Mancarella55,47, D. Mandat31, B.C. Manning13, J. Manshanden42, P. Mantschd, S. Marafico33,
F.M. Mariani58,48, A.G. Mariazzi4, I.C. Mari¸s14, G. Marsella60,46, D. Martello55,47 , S. Martinelli40,8, O. Mart´ınez
Bravo63, M.A. Martins78, M. Mastrodicasa56,45, H.J. Mathes40, J. Matthewsa, G. Matthiae61,50 , E. Mayotte84,37,
S. Mayotte84, P.O. Mazurd, G. Medina-Tanco67 , D. Melo8, A. Menshikov39, S. Michal32, M.I. Micheletti6,
L. Miramonti58,48, S. Mollerach1, F. Montanet35, L. Morejon37, C. Morello53,51 , A.L. M¨uller31, K. Mulrey79,80 ,
R. Mussa51, M. Muzio87, W.M. Namasaka37 , A. Nasr-Esfahani37, L. Nellen67, G. Nicora2, M. Niculescu-
Oglinzanu72, M. Niechciol43, D. Nitz86, I. Norwood86 , D. Nosek30, V. Novotny30 , L. Noˇzka32 , A Nucita55,47,
L.A. N´nez29, C. Oliveira19, M. Palatka31, J. Pallotta2, G. Parente78, A. Parra63, J. Pawlowsky37, M. Pech31,
J. P¸ekala69, R. Pelayo64 , E.E. Pereira Martins38,8, J. Perez Armand20, C. P´erez Bertolli8,40, L. Perrone55,47 ,
S. Petrera44,45, C. Petrucci56,45, T. Pierog40, M. Pimenta71, M. Platino8, B. Pont79, M. Pothast80,79, M. Pourmo-
hammad Shavar60,46, P. Privitera88 , M. Prouza31, A. Puyleart86, S. Querchfeld37 , J. Rautenberg37, D. Ravignani8,
M. Reininghaus38, J. Ridky31, F. Riehn71, M. Risse43, V. Rizi56,45, W. Rodrigues de Carvalho79 , J. Ro-
driguez Rojo11 , M.J. Roncoroni8, S. Rossoni42, M. Roth40, E. Roulet1, A.C. Rovero5, P. Ruehl43, A. Saftoiu72 ,
M. Saharan79, F. Salamida56,45 , H. Salazar63 , G. Salina50, J.D. Sanabria Gomez29, F. S´anchez8, E.M. Santos20,
E. Santos31, F. Sarazin84, R. Sarmento71, R. Sato11 , P. Savina90, C.M. Sch¨afer40, V. Scherini55,47, H. Schieler40,
M. Schimassek40, M. Schimp37, F. Schl¨uter40,8, D. Schmidt38, O. Scholten15, H. Schoorlemmer79,80,
P. Schoanek31 , F.G. Schr¨oder89,40, J. Schulte41, T. Schulz40 , S.J. Sciutto4, M. Scornavacche8,40, A. Segreto52,46 ,
S. Sehgal37, S.U. Shivashankara75, G. Sigl42, G. Silli8, O. Sima72,b, R. Smau72, R. ˇ
Sm´ıda88, P. Sommersh,
J.F. Soriano85, R. Squartini10, M. Stadelmaier31, D. Stanca72, S. Staniˇc75, J. Stasielak69, P. Stassi35 , M. Straub41,
A. Streich38,8, M. Su´arez-Dur´an14, T. Sudholz13, T. Suomij¨arvi36, A.D. Supanitsky8, Z. Szadkowski70, A. Tapia28,
C. Taricco62,51, C. Timmermans80,79, O. Tkachenko40, P. Tobiska31, C.J. Todero Peixoto18, B. Tom´e71, Z. Torr`es35,
A. Travaini10, P. Travnicek31, C. Trimarelli56,45, M. Tueros4, R. Ulrich40, M. Unger40, L. Vaclavek32, M. Vacula32,
J.F. Vald´es Galicia67, L. Valore59,49, E. Varela63, A. V´asquez-Ram´ırez29, D. Veberiˇc40, C. Ventura26, I.D. Ver-
gara Quispe4, V. Verzi50, J. Vicha31, J. Vink82, S. Vorobiov75, C. Watanabe25, A.A. Watsonc, A. Weindl40,
L. Wiencke84, H. Wilczy´nski69, D. Wittkowski37, B. Wundheiler8, A. Yushkov31, O. Zapparrata14 , E. Zas78,
D. Zavrtanik75,76, M. Zavrtanik76,75, L. Zehrer75
1Centro At´omico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
2Centro de Investigaciones en L´aseres y Aplicaciones, CITEDEF and CONICET, Villa Martelli, Argentina
3Departamento de F´ısica and Departamento de Ciencias de la Atm´osfera y los Oc´eanos, FCEyN, Universidad de Buenos
Aires and CONICET, Buenos Aires, Argentina
4IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
5Instituto de Astronom´ıa y F´ısica del Espacio (IAFE, CONICET-UBA), Buenos Aires, Argentina
1
arXiv:2210.12959v1 [astro-ph.HE] 24 Oct 2022
6Instituto de F´ısica de Rosario (IFIR) – CONICET/U.N.R. and Facultad de Ciencias Bioqu´ımicas y Farmac´euticas
U.N.R., Rosario, Argentina
7Instituto de Tecnolog´ıas en Detecci´on y Astropart´ıculas (CNEA, CONICET, UNSAM), and Universidad Tecnol´ogica
Nacional – Facultad Regional Mendoza (CONICET/CNEA), Mendoza, Argentina
8Instituto de Tecnolog´ıas en Detecci´on y Astropart´ıculas (CNEA, CONICET, UNSAM), Buenos Aires, Argentina
9International Center of Advanced Studies and Instituto de Ciencias F´ısicas, ECyT-UNSAM and CONICET, Campus
Miguelete – San Mart´ın, Buenos Aires, Argentina
10 Observatorio Pierre Auger, Malarg¨ue, Argentina
11 Observatorio Pierre Auger and Comisi´on Nacional de Energ´ıa At´omica, Malarg¨ue, Argentina
12 Universidad Tecnol´ogica Nacional – Facultad Regional Buenos Aires, Buenos Aires, Argentina
13 University of Adelaide, Adelaide, S.A., Australia
14 Universit´e Libre de Bruxelles (ULB), Brussels, Belgium
15 Vrije Universiteit Brussels, Brussels, Belgium
16 Centro Federal de Educa¸ao Tecnol´ogica Celso Suckow da Fonseca, Nova Friburgo, Brazil
17 Instituto Federal de Educa¸ao, Ciˆencia e Tecnologia do Rio de Janeiro (IFRJ), Brazil
18 Universidade de S˜ao Paulo, Escola de Engenharia de Lorena, Lorena, SP, Brazil
19 Universidade de S˜ao Paulo, Instituto de F´ısica de S˜ao Carlos, S˜ao Carlos, SP, Brazil
20 Universidade de S˜ao Paulo, Instituto de F´ısica, S˜ao Paulo, SP, Brazil
21 Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
22 Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
23 Universidade Federal do ABC, Santo Andr´e, SP, Brazil
24 Universidade Federal do Paran´a, Setor Palotina, Palotina, Brazil
25 Universidade Federal do Rio de Janeiro, Instituto de F´ısica, Rio de Janeiro, RJ, Brazil
26 Universidade Federal do Rio de Janeiro (UFRJ), Observat´orio do Valongo, Rio de Janeiro, RJ, Brazil
27 Universidade Federal Fluminense, EEIMVR, Volta Redonda, RJ, Brazil
28 Universidad de Medell´ın, Medell´ın, Colombia
29 Universidad Industrial de Santander, Bucaramanga, Colombia
30 Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech
Republic
31 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
32 Palacky University, RCPTM, Olomouc, Czech Republic
33 CNRS/IN2P3, IJCLab, Universit´e Paris-Saclay, Orsay, France
34 Laboratoire de Physique Nucl´eaire et de Hautes Energies (LPNHE), Sorbonne Universit´e, Universit´e de Paris, CNRS-
IN2P3, Paris, France
35 Univ. Grenoble Alpes, CNRS, Grenoble Institute of Engineering Univ. Grenoble Alpes, LPSC-IN2P3, 38000 Grenoble,
France
36 Universit´e Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
37 Bergische Universit¨at Wuppertal, Department of Physics, Wuppertal, Germany
38 Karlsruhe Institute of Technology (KIT), Institute for Experimental Particle Physics, Karlsruhe, Germany
39 Karlsruhe Institute of Technology (KIT), Institut f¨ur Prozessdatenverarbeitung und Elektronik, Karlsruhe, Germany
40 Karlsruhe Institute of Technology (KIT), Institute for Astroparticle Physics, Karlsruhe, Germany
41 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
42 Universit¨at Hamburg, II. Institut f¨ur Theoretische Physik, Hamburg, Germany
43 Universit¨at Siegen, Department Physik – Experimentelle Teilchenphysik, Siegen, Germany
44 Gran Sasso Science Institute, L’Aquila, Italy
45 INFN Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy
46 INFN, Sezione di Catania, Catania, Italy
47 INFN, Sezione di Lecce, Lecce, Italy
48 INFN, Sezione di Milano, Milano, Italy
49 INFN, Sezione di Napoli, Napoli, Italy
50 INFN, Sezione di Roma “Tor Vergata”, Roma, Italy
51 INFN, Sezione di Torino, Torino, Italy
52 Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo, Italy
53 Osservatorio Astrofisico di Torino (INAF), Torino, Italy
54 Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali , Milano, Italy
55 Universit`a del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy
56 Universit`a dell’Aquila, Dipartimento di Scienze Fisiche e Chimiche, L’Aquila, Italy
57 Universit`a di Catania, Dipartimento di Fisica e Astronomia “Ettore Majorana“, Catania, Italy
58 Universit`a di Milano, Dipartimento di Fisica, Milano, Italy
59 Universit`a di Napoli “Federico II”, Dipartimento di Fisica “Ettore Pancini”, Napoli, Italy
60 Universit`a di Palermo, Dipartimento di Fisica e Chimica ”E. Segr`e”, Palermo, Italy
61 Universit`a di Roma “Tor Vergata”, Dipartimento di Fisica, Roma, Italy
62 Universit`a Torino, Dipartimento di Fisica, Torino, Italy
63 Benem´erita Universidad Aut´onoma de Puebla, Puebla, M´exico
64 Unidad Profesional Interdisciplinaria en Ingenier´ıa y Tecnolog´ıas Avanzadas del Instituto Polit´ecnico Nacional (UPIITA-
IPN), M´exico, D.F., M´exico
2
65 Universidad Aut´onoma de Chiapas, Tuxtla Guti´errez, Chiapas, M´exico
66 Universidad Michoacana de San Nicol´as de Hidalgo, Morelia, Michoac´an, M´exico
67 Universidad Nacional Aut´onoma de M´exico, M´exico, D.F., M´exico
68 Universidad Nacional de San Agustin de Arequipa, Facultad de Ciencias Naturales y Formales, Arequipa, Peru
69 Institute of Nuclear Physics PAN, Krakow, Poland
70 University of od´z, Faculty of High-Energy Astrophysics, od´z, Poland
71 Laborat´orio de Instrumenta¸ao e F´ısica Experimental de Part´ıculas – LIP and Instituto Superior T´ecnico – IST,
Universidade de Lisboa – UL, Lisboa, Portugal
72 “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Bucharest-Magurele, Romania
73 Institute of Space Science, Bucharest-Magurele, Romania
74 University Politehnica of Bucharest, Bucharest, Romania
75 Center for Astrophysics and Cosmology (CAC), University of Nova Gorica, Nova Gorica, Slovenia
76 Experimental Particle Physics Department, J. Stefan Institute, Ljubljana, Slovenia
77 Universidad de Granada and C.A.F.P.E., Granada, Spain
78 Instituto Galego de F´ısica de Altas Enerx´ıas (IGFAE), Universidade de Santiago de Compostela, Santiago de Com-
postela, Spain
79 IMAPP, Radboud University Nijmegen, Nijmegen, The Netherlands
80 Nationaal Instituut voor Kernfysica en Hoge Energie Fysica (NIKHEF), Science Park, Amsterdam, The Netherlands
81 Stichting Astronomisch Onderzoek in Nederland (ASTRON), Dwingeloo, The Netherlands
82 Universiteit van Amsterdam, Faculty of Science, Amsterdam, The Netherlands
83 Case Western Reserve University, Cleveland, OH, USA
84 Colorado School of Mines, Golden, CO, USA
85 Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY, USA
86 Michigan Technological University, Houghton, MI, USA
87 New York University, New York, NY, USA
88 University of Chicago, Enrico Fermi Institute, Chicago, IL, USA
89 University of Delaware, Department of Physics and Astronomy, Bartol Research Institute, Newark, DE, USA
90 University of Wisconsin-Madison, Department of Physics and WIPAC, Madison, WI, USA
—–
aLouisiana State University, Baton Rouge, LA, USA
balso at University of Bucharest, Physics Department, Bucharest, Romania
cSchool of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
dFermi National Accelerator Laboratory, Fermilab, Batavia, IL, USA
enow at Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
fMax-Planck-Institut f¨ur Radioastronomie, Bonn, Germany
gColorado State University, Fort Collins, CO, USA
hPennsylvania State University, University Park, PA, USA
Correspondence: spokespersons@auger.org
Abstract
The Pierre Auger Observatory, being the largest air-shower experiment in the world, offers an unprece-
dented exposure to neutral particles at the highest energies. Since the start of data taking more than 18
years ago, various searches for ultra-high-energy (UHE, E&1017 eV) photons have been performed: either
for a diffuse flux of UHE photons, for point sources of UHE photons or for UHE photons associated with
transient events like gravitational wave events. In the present paper, we summarize these searches and review
the current results obtained using the wealth of data collected by the Pierre Auger Observatory.
Keywords: photons; ultra-high energies; air showers; Pierre Auger Observatory; upper limits, transients
1 Introduction
The search for neutral particles—in particular photons and neutrinos—of cosmic origin at the highest energies
has been for many years one of the major scientific objectives of the Pierre Auger Observatory. From
the theory side, such searches are well-motivated: many models for the origin of ultra-high-energy (UHE)
cosmic rays predict at least some neutral particles as by-products, either directly at the sources or during
the propagation through the Universe (see, e.g., [1–5]). In fact, even though no UHE photons have been
unambiguously identified so far, the upper limits on their incoming flux have been already used to severely
constrain so-called top-down models for the origin of UHE cosmic rays involving e.g. topological defects or
super-heavy dark matter (see, e.g., [6–9]). In addition, the recent observations of photons with energies up
to 1015 eV [10] further motivate searches for photons at even higher energies. An observation of such photons
would also be key in completing the multi-messenger approach aimed at understanding the most extreme
processes in the Universe, taking advantage of the fact that neutral particles directly point back at their
production site. However, one has to take into account that UHE photons, unlike neutrinos, interact with
the background photon fields permeating the Universe, reducing their attenuation length to about 30 kpc
around 1015 eV, which increases to the order of 10 Mpc around 1019 eV [11]. In the present paper, we review
3
the current state of such searches at the Pierre Auger Observatory. After a short introduction addressing the
specificities of air showers initiated by photons (Sec. 2), we briefly describe the Pierre Auger Observatory
(Sec. 3). We then focus first on the searches for a diffuse flux of UHE photons using the different detector
systems of the Observatory (Sec. 4), before we describe the searches for UHE photons from point sources and
transient events (Sec. 5). We close with a short outlook (Sec. 6), discussing the ongoing detector upgrade of
the Pierre Auger Observatory, dubbed AugerPrime.
2 Photon-induced air showers
When a UHE photon enters the Earth’s atmosphere, it may interact with a particle from the atmosphere,
for example a nitrogen nucleus, and induce an extensive air shower, much in the same way as a charged
cosmic ray does. Hence, a cosmic-ray observatory detecting air showers is also, by construction, a photon
observatory—and even a neutrino observatory, highlighting the importance of such observatories for multi-
messenger astrophysics. In fact, since the incoming flux of UHE cosmic particles is so low (on the order
of one particle per square kilometer and year and less), measuring the extensive air showers they initiate
in the atmosphere with large detector arrays on ground is the only way to efficiently detect them. The
challenge lies in distinguishing air showers induced by photons from the vast background of air showers that
are initiated by charged cosmic rays, i.e., protons and heavier nuclei (for a review, see, e.g., [11]). The two
main differences between photon- and nucleus-induced air showers are shown schematically in Fig. 1. The
longitudinal development of an air shower, as a function of the slant depth X, is delayed for a primary photon
with respect to primary nuclei, due to the lower multiplicity of electromagnetic interactions (compared to
hadronic interactions) that dominate in a photon-induced air shower. The maximum of the shower devel-
opment within the atmosphere, Xmax, is reached later. For example, at a primary energy of 1019 eV, the
difference is about 200 g cm2. Since the mean free path for photo-nuclear interactions is much larger than
the radiation length, only a small fraction of the electromagnetic component in a photon-induced shower
is transferred to the hadronic component and subsequently to the muonic component. Showers induced by
photons are thus characterized by a lower number of muons. On average, simulations show that photon-
induced showers have nearly one order of magnitude less muons than those initiated by protons or nuclei
of the same primary energy. In one way or another, all searches for UHE photons using air-shower data
exploit these two key differences: Xmax, for example, can be directly measured using the air-fluorescence
technique. The number of muons cannot yet be directly measured using the current detector systems of the
Pierre Auger Observatory. However, one can measure the lateral distribution of secondary particles from
the air shower at ground level, which depends on both the number of muons and the longitudinal devel-
opment. In particular, the steepness of the lateral distribution is sensitive to the type of the primary particle.
The difference in Xmax between photon- and proton-induced air showers is amplified by the Landau-
Pomeranchuk-Migdal (LPM) effect [12, 13], i.e., the suppression of the bremsstrahlung and pair production
cross sections at high energies. In addition, the preshower effect [14–16] also has to be taken into account:
depending on its incident direction with respect to the local geomagnetic field, a UHE photon can initiate an
electromagnetic cascade in the Earth’s magnetic field even before entering the atmosphere—a preshower. The
observed air shower is then a superposition of the individual cascades of the photons and electrons/positrons
from the preshower, leading on average to a smaller measured Xmax than for non-preshowering photons of
the same primary energy.
3 The Pierre Auger Observatory
The Pierre Auger Observatory [17], located near the town of Malarg¨ue in the Argentinian Pampa Amarilla,
is the largest cosmic-ray observatory to date, offering an unprecedented exposure to UHE photons. A key
feature of the Pierre Auger Observatory is the hybrid concept, combining a Surface Detector array (SD) with
a Fluorescence Detector (FD), see Fig. 2. The SD consists of 1600 water-Cherenkov detectors arranged on a
triangular grid with a spacing of 1500 m, covering a total area of about 3000 km2. The SD is overlooked by
24 fluorescence telescopes, located at four sites at the border of the array. The SD samples the lateral shower
profile at ground level, i.e., the distribution of particles as a function of the distance from the shower axis,
with a duty cycle of 100 %, while the FD records the longitudinal shower development in the atmosphere
above the SD. The FD can only be operated in clear, moonless nights, reducing the duty cycle to 15 %.
Through combining measurements from both detector systems in hybrid events, a superior accuracy of the
air-shower reconstruction can be achieved than with just one system [18]. In the western part of the SD
array, 50 additional SD stations have been placed between the existing SD stations, forming a sub-array
with a spacing of 750 m and covering a total area of about 27.5 km2. With this sub-array, air showers of
lower primary energy (below 1018 eV) with a smaller footprint on ground can be measured. To allow also for
hybrid measurements in this energy range, where air showers develop above the field of view of the standard
FD telescopes, three additional High-Elevation Auger Telescopes (HEAT) have been installed at the FD site
Coihueco, overlooking the 750 m SD array. The HEAT telescopes operate in the range of elevation angles
from 30to 60, complementing the Coihueco telescopes operating in the 0to 30range. The combination
4
摘要:

SearchesforUltra-High-EnergyPhotonsatthePierreAugerObservatoryThePierreAugerCollaborationP.Abreu71,M.Aglietta53;51,I.Allekotte1,K.AlmeidaCheminant69,A.Almela8;12,J.Alvarez-Mu~niz78,J.Am-mermanYebra78,G.A.Anastasi53;51,L.Anchordoqui85,B.Andrada8,S.Andringa71,C.Aramo49,P.R.AraujoFerreira41,E.Arnone62...

展开>> 收起<<
Searches for Ultra-High-Energy Photons at the Pierre Auger Observatory The Pierre Auger Collaboration.pdf

共19页,预览4页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:19 页 大小:9.09MB 格式:PDF 时间:2025-05-03

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 19
客服
关注