
2
monly known standards of behavior that are based on widely
shared views how group members ought to behave in a given
situation’.
Evolutionary game theory, where one strategy with higher
payoff is more likely to spread among the population16–20,
provides a theoretical framework for studying the effect of
social norm on the evolution of fairness. Under this frame-
work, a social norm is usually enforced by a reputation sys-
tem, where the cost of complying with the social norm can be
efficiently reduced21. Here, the social norm works as a top-
down mechanism that impacts the bottom-up behaviors indi-
rectly by generating a reputation uplift/downgrade, underlying
indirect reciprocity22. Note that indirect reciprocity has been
found to be a fundamental mechanism for the evolution of co-
operation in the donation game23–25. Then, a natural question
is how fair behavior in the DG is influenced by indirect reci-
procity.
In this work, we thereby address the emergence and mainte-
nance of fairness by an indirect reciprocal model. We consider
the random role assignment for individuals when they play
the DG with each other. Furthermore, note that in the real
society, a person with good reputation is more likely to vol-
unteer his time to work at an NGO, donate money to charity,
or give money to a homeless person on the street. Thus, be-
sides the random role assignment, we also investigate a way of
reputation-based role assignment for individuals. In addition,
the widely investigated social norms for the evolution of co-
operation use the first-order information (only the action), the
second-order information (the recipient’s reputation and the
action), or the third-order information (the two participants’
reputation and the action) to assess the actor’s reputation. In
an exhaustive research of the third-order social norms26, eight
social norms, called as the ‘leading eight’ norms, were found
to maintain cooperation. In this paper, we concentrate on the
‘leading eight’ norms together with all possible second-order
social norms, and study which social norms can promote the
evolution of fairness in our indirect reciprocal model.
II. MODEL
We consider a finite well-mixed population with population
size Zand each player in the population is assigned with a bi-
nary reputation, good or bad. Any two players are randomly
chosen from the population to engage in a DG, where one is
the dictator and the other one is the recipient. The 50 −50 di-
vision is widely observed in economic environments of the
real world and the laboratory27. Accordingly we consider
a simplified version of the DG, where the dictator only has
two optional strategies, 50 −50 division (fair split is abbrevi-
ated as F) and 100 −0 division (unfair split is abbreviated as
N). Since the DG includes two roles of dictator and recipi-
ent, two ways of role assignment will be investigated, that is,
the random role assignment and the reputation-based role as-
signment (see the illustrative plot in Fig. 1). In the random
role assignment, the two participants have the equal possibil-
ity of becoming the dictator. While in the reputation-based
role assignment, the individual with good reputation plays the
FIG. 1. The DG under indirect reciprocity. (A) Pairs of players are
randomly chosen from the well-mixed population to play the DG,
in which the dictator can make a 50 −50 division or a 100 −0 di-
vision with a recipient. Then a third player is randomly chosen as
the observer to report the dictator’s reputation or not. (B) Two ways
of role assignment. In the random role assignment, the two partici-
pants have the same possibility of becoming the dictator. Yet in the
reputation-based role assignment, the good plays the role of dictator
when he interacts with the bad; two players with the same reputation
are randomly chosen as the dictator or the recipient.
role of dictator when the opponent is a bad individual; two
players with the same reputation are randomly chosen as the
dictator or the recipient. In addition, each interaction can be
witnessed by a randomly chosen third player. After observing
and assessing the interaction, the observer chooses to report
the outcome (abbreviated as R) or to be silent (abbreviated as
S). Note that reporting means that the observer shares the dic-
tator’s reputation with all other players, and accordingly bears
a personal cost cR.
Here, we denote the strategy of each player in the game
by a three-letter string sGsBsR, which depicts (1) whether the
player makes a fair division with a good recipient (sG=F)
or not (sG=N)if he finds himself in the role of dictator, (2)
whether the player makes a fair division with a bad recipient
(sB=F)or not (sB=N)if in the role of dictator, and (3)
whether the player reports (sR=R)or not (sR=S)if in the
role of observer. Following the common practice28, an im-
plementation error is also considered, meaning that a dictator
fails to act fairly when he intends to be fair with probability ε.
The observer uses the social norm to assess the dictator’s rep-
utation. In this work, we consider the ‘leading eight’ norms
and all second-order social norms. Assume that a third-order
social norm is represented by two four-dimensional vectors
SG= (FG,FB,NG,NB)and SB= (FG,FB,NG,NB), which de-
note two cases where the previous reputation of the dictator
is good or bad. Regarding each entry of SGand SB, we set
LM=1, which means that the dictator is labelled with a good
credit when he takes action Lagainst a recipient of reputation
M, and analogously LM=0, which means that the correspond-
ing dictator is regarded as bad. Particularly, a second-order
social norm satisfies SG=SB.
After individuals play the game and obtain the payoffs, they
will take the strategy imitation by the pairwise comparison
rule29. To be specific, in each generation two players are ran-
domly chosen to become the focal one and the model one,
respectively. With a small probability µ, a mutation occurs,
meaning that the focal one randomly adopts one of all candi-