
where mis the WFS filtering mask. Hence, we have a 2D sensitivity function swhich takes as argument two
maps:
•P SF which corresponds to the Point-Spread Function at the filtering mask plane.
•m: the WFS filtering mask.
For a given pupil shape (and therefore a given PSF), we suggest here to numerically optimise the 2D sensitivity
map through Eq. 4and Eq. 5. This sensitivity map therefore depends only on the mask m:s=s(m). We call
starget the targeted sensitivity. We aim at inverting the problem thanks to numerical optimizations : given a
targeted sensitivity, it is possible to compute the corresponding mask. This technique is illustrated in a schematic
way figure 1.
Formula
vincent.chambouleyron
August 2021
1 Introduction
m|x,y “ei|x,y
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹m!q|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ipp
mq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
m|x,y “ei|x,y
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ipp
mq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
m|x,y “ei|x,y
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ipp
mq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
m|x,y “ei|x,y
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ipp
mq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
m|x,y “ei|x,y
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ipp
mq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
xyMASK
uvTARGET
RELATION
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ippmq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
xyMASK
uvTARGET
RELATION
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ippmq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
xyMASK
uvTARGET
RELATION
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ippmq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
xyMASK
uvTARGET
RELATION
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ippmq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
xyMASK
uvTARGET
RELATION
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ippmq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
xyUNKOWN mask
uvTARGET sensitivity
RELATION
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ippmq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
xyUNKOWN mask
uvTARGET sensitivity
RELATION
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ippmq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
xyUNKOWN mask
uvTARGET sensitivity
RELATION
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ippmq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
xyUNKOWN mask
non-linear inversion
RELATION
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ippmq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Formula
vincent.chambouleyron
August 2021
1 Introduction
xyMASK
uvTARGET
RELATION
!|u,v “PSF
|u,v fixed
s|u,v «a|TF|2‹PSF|u,v (1)
TF|u,v “2Impm‹mˆPSFq|u,v (2)
s|u,v “2
densit´e de probabilit´e de res
Ipq
BI
B|res
i
Ippmq
Ipq“D.“Dcalib.T.(3)
Ipq“Dcalib.G.(4)
Ipq“IR‹(5)
IR (6)
1
Figure 1. Mask optimization. The target sensitivity map is chosen to be maximal on a given spatial frequency range
(u, v).
The least-square criterion is used for the optimization, and the scoring function F(function to be minimized)
is written:
F(m) = ||starget −s(m)||2(6)
Fis a function which goes from Rkin Rwhere kis the number of parameters on which the mask is optimized.
It is therefore possible to implement non-linear numerical optimization methods in order to find a minimum of
this score function. However, it is not obvious that this function is convex: it can thus exhibit several local
minima, and it will consequently be difficult to be ensured to have reached the global minimum at the end of an
optimization process. To carry out this numerical optimization, we use the lsqnonlin function of MATLAB which
is a non-linear least squares problem solver using the Levenberg-Marquardt algorithm. This algorithm is based
on classical gradient descent methods. The goal of this study is to build a mask with an optimal sensitivity, so
the target sensitivity map is chosen to reach a value of 2 at each point in the frequency space: starget = 2. Our
score function thus becomes:
F(m) = ||2−s(m)||2(7)
An important point that must be emphasized: the optimization will be done here on the sensitivity with
respect to a uniform noise (like RON), because it is the one for which the convolutional model gives us an explicit
formula. We will show later that this study could be easily applied to photon noise sensitivity.