ON A PROJECTION LEAST SQUARES ESTIMATOR FOR JUMP DIFFUSION PROCESSES HÉLÈNE HALCONRUYAND NICOLAS MARIE

2025-05-02 0 0 825.44KB 19 页 10玖币
侵权投诉
ON A PROJECTION LEAST SQUARES ESTIMATOR FOR JUMP DIFFUSION
PROCESSES
HÉLÈNE HALCONRUY,AND NICOLAS MARIE
Léonard de Vinci Pôle universitaire, Research Center,
12 avenue Léonard de Vinci, 92400, Courbevoie, France.
Laboratoire Modal’X, Université Paris Nanterre,
200 avenue de la République, 92001, Nanterre, France.
Corresponding author: Nicolas MARIE (nmarie@parisnanterre.fr).
Abstract. This paper deals with a projection least squares estimator of the drift function of a jump
diffusion process Xcomputed from multiple independent copies of Xobserved on [0, T ]. Risk bounds
are established on this estimator and on an associated adaptive estimator. Finally, some numerical
experiments are provided.
Contents
1. Introduction 1
2. A projection least squares estimator of the drift function 3
2.1. The objective function 3
2.2. The projection least squares estimator and some related matrices 4
3. Risk bound on the projection least squares estimator 5
4. Model selection 8
5. Numerical experiments 9
Appendix A. Proofs 10
A.1. Proof of Lemma 1 10
A.2. Proof of Theorem 1 10
A.3. Proof of Theorem 2 13
Appendix B. Figures and tables 17
References 18
1. Introduction
Let Z= (Zt)t[0,T ]be the compound Poisson process defined by
Zt:=
νt
X
n=1
ζn=Zt
0Z
−∞
zµ(ds, dz)
for every t[0, T ], where ν= (νt)t[0,T ]is a (usual) Poisson process of intensity λ > 0, independent
of the ζn’s which are i.i.d. random variables of probability distribution π, and µis the Poisson random
measure of intensity m(ds, dz) := λπ(dz)ds defined by
µ([0, t]×dz) := |{s[0, t] : ZsZsdz}| ;t[0, T ].
Key words and phrases. Projection least squares estimator ; Model selection ; Jump diffusion processes.
1
arXiv:2210.13164v2 [math.ST] 25 Jul 2023
2 HÉLÈNE HALCONRUY,AND NICOLAS MARIE
In the sequel, Zis replaced by the centered martingale Z= (Zt)t[0,T ]defined by
Zt:= ZtZt
0Z
−∞
zm(ds, dz) = Ztcζλt
for every t[0, T ], where cζis the (common) expectation of the ζn’s. Now, let us consider the stochastic
differential equation
(1) Xt=x0+Zt
0
b(Xs)ds +Zt
0
σ(Xs)dBs+Zt
0
γ(Xs)dZs;t[0, T ],
where x0R,B= (Bt)t[0,T ]is a Brownian motion independent of Z,bC1(R)and its derivative is
bounded, and σ, γ :RRare bounded Lipschitz continuous functions such that infxRσ(x)2γ(x)2>0.
Under these conditions on b,σand γ, Equation (1) has a unique (strong) solution X= (Xt)t[0,T ].
As for continuous diffusion processes, the major part of the estimators of the drift function in stochastic
differential equations driven by jump processes are computed from one path of the solution to Equation
(1) and converges when T→ ∞ (see Schmisser (2014), Gloter et al. (2018), Amorino et al. (2022), etc.).
The existence and the uniqueness of the ergodic stationary solution to Equation (1) is then required,
and obtained thanks to a restrictive dissipativity condition on b. For stochastic differential equations
driven by a pure-jump Lévy process, some authors have also studied estimation methods based on high
frequency observations, on a fixed time interval, of one path of the solution (see Clément and Gloter
(2019,2020)).
Now, consider Xi:= I(x0, Bi,Zi)for every i∈ {1, . . . , N}, where I(.)is the Itô map associated to
Equation (1) and (B1,Z1),...,(BN,ZN)are NNindependent copies of (B, Z). The estimation of
the drift function bfrom a continuous-time or a discrete-time observation of (X1, . . . , XN)is a functional
data analysis problem already investigated in the parametric and in the nonparametric frameworks for
continuous diffusion processes (see Ditlevsen and De Gaetano (2005), Picchini and Ditlevsen (2011),
Delattre et al. (2013), Comte and Genon-Catalot (2020b), Denis et al. (2021), Marie and Rosier (2023),
etc.). Up to our knowledge, no such estimator of the drift function has been already proposed for jump
diffusion processes. So, our paper deals with a projection least squares estimator b
bmof bcomputed from
X1, . . . , XN, which means that b
bmis minimizing the objective function
τ7−γN(τ) := 1
NT
N
X
i=1 ZT
0
τ(Xi
s)2ds 2ZT
0
τ(Xi
s)dXi
s!
on a m-dimensional function space Sm. Precisely, risk bounds are established on b
bmand on the adaptive
estimator b
bcm, where
bm= arg min
mc
MN{−∥b
bm2
N+ pen(m)}
with c
MN⊂ {1, . . . , N},
pen(m) := ccal
m
N;mN
and ccal >0is a constant to calibrate in practice.
In Section 2, a detailed definition of the projection least squares estimator of bis provided. Section 3
deals with a risk bound on b
bmand Section 4 with a risk bound on the adaptive estimator b
bcm. Finally,
some numerical experiments are provided in Section 5. The proofs (resp. tables and figures) are post-
poned to Appendix A (resp. Appendix B).
Notations and basic definitions:
cζn:= E(ζn
1)for every nN.
Consider dN. The j-th component of any xRdis denoted by xjor [x]j.
ON A PROJECTION LEAST SQUARES ESTIMATOR FOR JUMP DIFFUSION PROCESSES 3
For every kN,.k,d is the norm on Rddefined by
xk,d :=
d
X
j=1 |xj|k
1/k
;xRd.
The spectral norm on the space Md(R)of the d×dreal matrices is denoted by .op:
Aop := sup
xRd:x2,d=1 Ax2,d ;A∈ Md(R).
2. A projection least squares estimator of the drift function
2.1. The objective function. Assume that the probability distribution of Xshas a density ps(x0, .)
with respect to Lebesgue’s measure for every s(0, T ], that s7→ ps(x0, x)belongs to L1([0, T ], dt)for
every xRwhich legitimates to consider the density function fTdefined by
fT(x) := 1
TZT
0
ps(x0, x)ds ;xR,
and that Z
−∞
b(x)4fT(x)dx < .
Remark 1. Assume that band πsatisfy the following additional conditions:
(1) The function bbelongs to the Kato class
K2:= (φ:RR: lim
δ0sup
xRZδ
0Z
−∞ |φ(x+y) + φ(xy)|s1/2(|y|+s1/2)3dyds = 0).
(2) The Lévy measure πλ(.) := λπ(.)has a density θwith respect to Lebesgue’s measure. Moreover,
there exists α(0,2) such that zR7→ θ(z)|z|1+αis bounded, and if α= 1, then
Zr<|z|<R
zθ(z)dz = 0 ; R > r > 0.
By Chen et al. (2017), Theorem 1.1 and the remark p. 126, l. 5-7, in Amorino and Gloter (2021), for
every s(0, T ], the probability distribution of Xshas a density ps(x0, .)with respect to Lebesgue’s
measure, and there exist two constants cp,mp>0, not depending on s, such that
(2) ps(x0, x)cps1/2exp mp
(xx0)2
s+s
(s1/2+|xx0|)1+α;xR.
So,
fTis well-defined and even bounded, which is crucial in Section 4. Indeed, since 1/2<1(1 +
α)/2<1/2, for every xR,
0fT(x)cp
T ZT
0
s1/2ds +ZT
0
s1(1+α)/2ds!=cp
T2T1/2+T2(1+α)/2
2(1 + α)/2<.
If there exists a constant cb>0and ε(0, α)as close as possible to 0such that |b(x)|
cb(1 + |x|)(αε)/4for every xR, then
b(x)4ps(x0, x) =
x→±∞,s0+Os1/2
|xx0|1+ε,
which leads to Z
−∞
b(x)4fT(x)dx < .
4 HÉLÈNE HALCONRUY,AND NICOLAS MARIE
Now, let us consider the objective function γN(.)defined by
γN(τ) := 1
NT
N
X
i=1 ZT
0
τ(Xi
s)2ds 2ZT
0
τ(Xi
s)dXi
s!
for every τ∈ Sm, where m∈ {1, . . . , NT},NT:= [N T ]+1,Sm:= span{φ1, . . . , φm},φ1, . . . , φNTare
continuous functions from Iinto Rsuch that (φ1, . . . , φNT)is an orthonormal family in L2(I, dx), and
IRis a non-empty interval. For any τ∈ Sm,
E(γN(τ)) = 1
TZT
0
E(|τ(Xs)b(Xs)|2)ds 1
TZT
0
E(b(Xs)2)ds
=Z
−∞
(τ(x)b(x))2fT(x)dx Z
−∞
b(x)2fT(x)dx.
Then, the closer τis to b, the smaller E(γN(τ)). For this reason, the estimator of bminimizing γN(.)is
studied in this paper.
2.2. The projection least squares estimator and some related matrices. Consider
J:=
m
X
j=1
θjφjwith θ1, . . . , θmR.
Then,
γN(J) = 1
NT
N
X
i=1 2
m
X
=1
θZT
0
φj(Xi
s)φ(Xi
s)ds 2ZT
0
φj(Xi
s)dXi
s!!j∈{1,...,m}
= 2( b
Ψm(θ1, . . . , θm)b
Xm)
where
b
Ψm:= 1
NT
N
X
i=1 ZT
0
φj(Xi
s)φ(Xi
s)ds!j,ℓ∈{1,...,m}
and
b
Xm:= 1
NT
N
X
i=1 ZT
0
φj(Xi
s)dXi
s!j∈{1,...,m}
.
The symmetric matrix b
Ψmis positive semidefinite because
ub
Ψmu=1
NT
N
X
i=1 ZT
0
m
X
j=1
ujφj(Xi
s)
2
ds 0
for every uRm. If in addition b
Ψmis invertible, it is positive definite, and then
(3) b
bm=
m
X
j=1 b
θjφjwith b
θm:= (b
θ1,...,b
θm)=b
Ψ1
mb
Xm
is the only minimizer of γN(.)on Sm, called the projection least squares estimator of b.
Remarks:
(1) b
Ψm= (φj, φN)j,ℓ, where
φ, ψN:= 1
NT
N
X
i=1 ZT
0
φ(Xi
s)ψ(Xi
s)ds
for every continuous functions φ, ψ :RR.
摘要:

ONAPROJECTIONLEASTSQUARESESTIMATORFORJUMPDIFFUSIONPROCESSESHÉLÈNEHALCONRUY†,⋄ANDNICOLASMARIE⋄†LéonarddeVinciPôleuniversitaire,ResearchCenter,12avenueLéonarddeVinci,92400,Courbevoie,France.⋄LaboratoireModal’X,UniversitéParisNanterre,200avenuedelaRépublique,92001,Nanterre,France.Correspondingauthor:Ni...

展开>> 收起<<
ON A PROJECTION LEAST SQUARES ESTIMATOR FOR JUMP DIFFUSION PROCESSES HÉLÈNE HALCONRUYAND NICOLAS MARIE.pdf

共19页,预览4页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:19 页 大小:825.44KB 格式:PDF 时间:2025-05-02

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 19
客服
关注