Mu2e Run I Sensitivity Projections for the Neutrinoless - e- Conversion Search in Aluminum.

2025-05-02 0 0 2.13MB 38 页 10玖币
侵权投诉
1 of 38
Article
Mu2e Run I Sensitivity Projections for the Neutrinoless µe
Conversion Search in Aluminum.
arXiv:2210.11380v1 [hep-ex] 20 Oct 2022
2 of 38
F. Abdi 26 , R. Abrams 28 , J. Adentunji 11 , W. Ahmed 15 , R. Alber 11 , D. Alexander 15 , D. Allen 11 , D. Allspach 11 , C.
Alvarez-Garcia 23 , D. Ambrose 26 , G. Ambrosio 11 , A. Amirkhanov 31 , N. Andreev 11 , C. M. Ankenbrandt 28 , R.
Appleby 23 , D. Arnold 11 , A. Artikov 9, N. Atanov 9, K. Badgley 11 , M. Ball 11 , V. Baranov 9, J. Barker 11 , E. Barnes 2,
B. Barton 37 , L. Bartoszek 11 , G. Bellettini 32 , R. H. Bernstein 11 , A. Bersani 13 , I. Bianchi 11 , K. Biery 11 , S. Bini 12 , G.
Blazey 29 , C. Bloise 12 , K. Boedigheimer 26 , S. Boi 11 , T. Bolton 16 , J. Bono 11 , R. Bonventre 17 , S. Borghi 23 , L. Borrel 7
, R. Bossert 11 , T. Bowcock 20 , M. Bowden 11 , J. Brandt 11 , M. Breach 26 , D. Brown 17 , D. N. Brown 22 , G. Brown 11 , H.
Brown 11 , I. Budagov 9,‡ , M. Buelher 11 , G.-M. Bulugean 26 , K. Byrum 1, M. Campbell 11 , H. Cao 33 , R. M. Carey 2, J.
F. Caron 15 , B. Casey 11 , H. Casler 8, F. Cervelli 32 , S. Cheban 11 , J. Chen 33 , M. Chen 11 , C.-H. Cheng 7, R. Chislett 21 ,
N. Chitirasreemadam 32 , D. Chokheli 9, K. Ciampa 26 , R. Ciolini 32 , J. Coghill 11 , F. Colao 12 , R. N. Coleman 11 , S.
Corrodi 1, L. Crescimbeni 32 , C. Crowley 11 , R. Culbertson 11 , M. A. C. Cummings 28 , A. Daniel 15 , Y. Davydov 9, S.
Demers 38 , A. Deshpande 11 , M. Devilbiss 25 , J. Dey 11 , G. De Felice 32 , A. De Gouvea 30 , J. Dhanraj 11 , D. Ding 30 , D.
Ding 4,17 , M. Dinnon 11 , E. Diociaiuti 12 , S. Dixon 11 , S. Di Falco 32 , R. Djilkibaev 27 , S. Donati 32 , G. Drake 11 , B.
Drendel 11 , G. Duerling 11 , E. C. Dukes 37 , A. Dychkant 29 , B. Echenard 7, N. Eddy 11 , A. Edmonds 2,17 , R. Ehrlich 37 ,
U. Ekka 26 , R. Evans 11 , D. Evbota 11 , P. Fabbricatore 13 , J. Fagan 11 , S. Farinon 13 , W. Farrell 37 , P. Farris 37 , S. Feher 11
, B. Fellenz 11 , E. Fernandez 37 , A. Ferrari 14 , C. Ferrari 32 , J. Finley 33 , K. Flood 7, E. Flumerfelt 11 , F. Fontana 24 , K.
Francis 29 , M. Frand 26 , M. Frank 34 , H. Friedsam 11 , G. Gallo 11 , R. P. Gandrajula 37 , A. Gaponenko 11 , M. Gardner 11
, R. Gargiulo 12 , S. Gaugel 11 , K. L. Genser 11 , M. Gersabeck 23 , G. Ginther 11 , A. Gioiosa 32 , S. Giovannella 12 , V.
Giusti 32 , V. Glagolev 9, H. Glass 11 , D. A. Glenzinski 11 , S. Goadhouse 37 , L. Goodenough 11 , F. Grancagnolo 18 , P.
Gray 26 , C. Group 37 , A. Hahn 11 , D. Hampai 12 , S. Hansen 11 , F. Happacher 12 , L. Harkness-Brennan 20 , K. Harrig 5,
B. Hartsell 11 , S. Hays 11 , M. Hedges 33 , D. Hedin 29 , K. Heller 26 , A. Herman 4, S. Hirsh 4,17 , D. G. Hitlin 7, A.
Hocker 11 , R. Hooper 19 , G. Horton-Smith 16 , S. Huang 33 , E. Huedem 11 , D. Huffman 11 , P. Q. Hung 37 , E.
Hungerford 15 , A. Ibrahim 11 , S. Israel 2, M. Jenkins 34 , C. Johnstone 11 , M. Jones 33 , V. Jorjadze 2, D. Judson 20 , C.
Kampa 30 , M. Kargiantoulakis 11 , V. Kashikhin 11 , P. Kasper 11 , A. Keshavarzi 23 , V. Khalatian 2, J.-H. Kim 7, T. Kiper
11 , D. Knapp 11 , O. Knodel 14 , K. Knoepfel 11 , L. Kokosa 11 , Yu. G. Kolomensky 4, D. Koltick 33 , M. Kozlovsky 11 , J.
Kozminski 19 , G. Kracczyk 11 , M. Kramp 11 , S. Krave 11 , K. Krempetz 11 , R. K. Kutschke 11 , R. Kwarciany 11 , T.
Lackowski 11 , M. J. Lamm 11 , M. Lancaster 23 , M. Larwill 11 , F. Leavell 11 , M. J. Lee 17 , D. Leeb 11 , J. Lema-Sinchi 26 , T.
Leveling 11 , R. Lewis 11 , A. Ley 26 , B. Li 26 , Y. Li 7, D. Lin 7, D. Lincoln 11 , I. Logashenko 31 , V. Lombardo 11 , M.L.
Lopes 11,‡ , A. Luca 11 , K. R. Lynch 8, M. MacKenzie 30 , A. Makulski 11 , J. Manolis 26 , Yu. Maravin 16 , W. J. Marciano 3
, A. Marini 32 , E. Martin 26 , A. Martinez 11 , M. Martini 24 , D. McArthur 11 , F. McConologue 11 , N. Mesmer 19 , B.
Messerly 26 , L. Michelotti 11 , S. Middleton 7, C. Miles 37 , J. P. Miller 2, T. M. Nguyen 5,8 , S. Miscetti 12 , D. Mitchell 11 ,
T. Miyashita 7, N. Mokhov 11 , D. Molenaar 26 , W. Molzon 6, J. Moore 26 , L. Morescalchi 32 , J. Morgan 11 , J. Mott 2, E.
Motuk 21 , S. Mueller 14 , A. Mukherjee 11 , P. Murat 11 , R. Musenich 13 , V. Nagaslaev 11 , A. Narayanan 29 , R. Neely 16 ,
D. V. Neuffer 11 , M. T. Nguyen 5, T. Nicol 11 , J. Niehoff 11 , J. Nogiec 11 , A. Norman 11 , K. Northrup 26 , V. O’Dell 11 , S.
Oh 10 , Yu. Oksuzian 1, P. Olderr 11 , M. Olson 11 , D. Orris 11 , B. Oshinowo 11 , R. Ostojic 11 , J. Oyang 7, D. Paesani 12 ,
S. Pagan 17 , T. Page 11 , A. Palladino 2, C. Park 11 , D. Pasciuto 32 , E. Pedreschi 32 , T. Peterson 11 , G. Pezzullo 38 , R.
Pilipenko 11 , A. Pla-Dalmau 11 , P. Plesniak 21 , N. Pohlman 29 , B. Pollack 30 , V. Poloubotko 11 , M. Popovic 11 , J. L.
Popp. 8, F. Porter 7, E. J. Prebys 5, J. Price 20 , P. Prieto 11 , V. Pronskikh 11 , D. Pushka 11 , J. Quirk 2, R. Rabehl 11 , R.
Rachamin 14 , F. Raffaelli 32 , A. Ragheb 26 , G. Rakness 11 , R. E. Ray 11 , R. Rechenmacher 11 , R. Rivera 11 , G. Rizzo 26 ,
B. L. Roberts 2, S. Roberts 37 , T. J. Roberts 28 , W. Robotham 11 , M. Roehrken 7, P. Rubinov 11 , R. Rucinski 11 , V. L.
Rusu 11 , M.F. Samavat 26 , E. Sanzani 12 , A. Saputi 12 , I. Sarra 12 , M. Sarychev 11 , V. Scarpine 11 , W. Schappert 11 , M.
Schmitt 30 , P. Schmitter 26 , D. Schoo 11 , K. Schumacher 37 , X. Shi 33 , V. Singh 4, T. Sobering 16 , R. Soleti 17 , M. Solt 37
, H. Song 2,17 , E. Song 37 , F. Spinella 32 , M. Srivastav 37 , A. Stefanik 11 , S. Stetzler 37 , D. Still 11 , M. Stortini 38 , D.
Stratakis 11 , T. Strauss 11 , Y. Sun 11 , I. Suslov 9, M. J. Syphers 29 , L. Szemraj 30 , J. Ta 26 , A. Taffara 32 , Z. Tang 11 , N.
Tanovic 11 , M. Tartaglia 11 , G. Tassielli 18 , R. Taylor 16 , M. Tecchio 25 , S. Tickle 20 , D. Tinsley 11 , T. Tope 11 , A.
Torkelson 26 , N. Tran 2, J. Trevor 7, R. S. Tschirhart 11 , S. Turnberg 26 , S. Uzunyan 29 , D. Varier 17 , D. Varier 4, M.
Velasco 30 , L. Vinas 17 , B. Vitali 32 , G. Vogel 11 , R. Wagner 1, R. Wagner 11 , R. Wands 11 , Y. Wang 2, C. Wang 10 , M.
Wang 11 , I. Wardlaw 26 , M. Warren 21 , S. Werkema 11 , H. B. White Jr. 11 , J. Whitmore 11 , R. Wielgos 11 , R. Wildberger
26 , L. Wills 26 , P. Winter 1, R. Woods 11 , C. Worel 11 , Y. Wu 25 , L. Xia 1, Z. You 35 , M. Yucel 11 , P. Zadeh 37 , A. M.
Zanetti 36 , D. Zhadan 31 , R.-Y. Zhu 7, R. Zifko 11 , V. Zutshi 29
(Mu2e Collaboration)


Citation: Mu2e Collaboration Mu2e
Run I Sensitivity Projections for the
Neutrinoless Muon to Electron
Conversion Search in Aluminum.
Preprints 2021,1, 0. https://doi.org/
Received:
Accepted:
Published:
Publishers Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-
iations.
1Argonne National Laboratory;
2Boston University;
3Brookhaven National Laboratory;
4University of California, Berkeley;
5University of California, Davis;
6University of California, Irvine;
7California Institute of Technology;
8City University of New York;
9Joint Institute for Nuclear Research, Dubna;
10 Duke University;
11 Fermi National Accelerator Laboratory;
12 Laboratori Nazionali di Frascati;
13 Istituto Nazionale di Fisica Nucleare, Genova;
14 Helmholtz-Zentrum Dresden-Rossendorf;
15 University of Houston;
16 Kansas State University;
17 Lawrence Berkeley National Laboratory;
18 Istituto Nazionale di Fisica Nucleare, Lecce and Universita del Salento;
19 Lewis University;
20 University of Liverpool;
21 University College London;
22 University of Louisville;
23 University of Manchester;
24 Laboratori Nazionali di Frascati and Universita Marconi Roma;
25 University of Michigan;
26 University of Minnesota;
27 Institute for Nuclear Research, Moscow;
28 Muons Inc.;
29 Northern Illinois University;
30 Northwestern University;
31 Novosibirsk State University/Budker Institute of Nuclear Physics;
32 Istituto Nazionale di Fisica Nucleare, Pisa;
33 Purdue University;
34 University of South Alabama;
35 Sun Yat-Sen University;
36 Istituto Nazionale Fisica Nucleare, Trieste;
37 University of Virginia;
38 Yale University;
*Correspondence: murat@fnal.gov
‡ Deceased.
Abstract:
The Mu2e experiment at Fermilab will search for the neutrinoless
µe
conversion in
the field of an aluminum nucleus. The Mu2e data-taking plan assumes two running periods, Run I
and Run II, separated by an approximately two-year-long shutdown. This paper presents an estimate
of the expected Mu2e Run I search sensitivity and includes a detailed discussion of the background
sources, uncertainties of their prediction, analysis procedures, and the optimization of the experimental
sensitivity. The expected Run I 5
σ
discovery sensitivity is
Rµe=
1.2
×
10
15
, with a total expected
background of 0.11
±
0.03 events. In the absence of a signal, the expected upper limit is
Rµe<
6.2
×
10
16
at 90% CL. This represents a three order of magnitude improvement over the current experimental limit
of Rµe<7×1013 at 90% CL set by the SINDRUM II experiment.
Keywords: lepton flavor violation; LFV; muon conversion
4 of 38
1. Introduction
Experimental observation of quark mixing and neutrino oscillations proves that inter-
actions of the Standard Model (SM) fermions are non-diagonal in flavor. Cross-generational
mixing in the quark and neutrino sectors is large,
|Vus|∼
0.2 [
1
] and
sin2θ23
0.6 [
2
]. In striking
contrast, no indication of flavor mixing has been observed in the charged lepton sector. In the
SM with massive neutrinos, charged lepton flavor is only approximately conserved. Virtual
loops with mixing neutrinos result in charged lepton flavor violating (CLFV) transitions, re-
gardless of whether neutrinos are Dirac or Majorana particles [
3
,
4
]. The branching fractions of
the corresponding processes are suppressed by factors proportional to
(m2
ν)2/M4
W
to a level
below 10
50
[
5
], significantly lower than the sensitivity of any current or planned experiment.
Experimental observation of any CLFV process would therefore imply the presence of physics
beyond the SM. Many extensions of the SM predict much higher rates of CLFV processes [
6
],
falling within the reach of the new generation of CLFV experiments coming online within the
next few years [
7
11
]. The process of coherent neutrinoless muon to electron conversion in a
nuclear field,
µAeA
, probes a wide spectrum of new physics models (see Ref. [
12
] for
general calculations). The present experimental limit on the rate of this process
Rµe=Γ(µ+N(A,Z)e+N(A,Z))
Γ(µ+N(A,Z)νµ+N(A,Z1)) <7×1013 (90% CL)
has been set by the SINDRUM II experiment on a gold target [13].
The Mu2e experiment at Fermilab [
9
] will search for
µAeA
on an aluminum target
with an improved sensitivity of about four orders of magnitude below the SINDRUM II limit.
The current Mu2e run plan assumes two data-taking periods, Run I and Run II, separated by
an approximately two-year-long shutdown. Run I is anticipated to start in 2025 and collect
about 10% of the total expected muon flux, improving the search sensitivity by three orders of
magnitude. Run II will further enhance the search sensitivity by another order of magnitude.
This article details estimates of the expected backgrounds and the sensitivity projections
for Mu2e Run I. The material is organized as follows. Section 2describes the Mu2e experiment
and the run plan. Section 3presents an overview of the event simulation framework. Sections 4,
5, and 6contain discussion of the event reconstruction, trigger simulation, and event selection,
respectively. Section 7describes the background processes, details of their simulation, and
gives the estimated contributions from each background source. Section 8presents the
sensitivity optimization procedure and discussion of the results.
2. Mu2e Experiment
2.1. Muon Beamline
The Mu2e experiment is based upon a concept proposed in Ref. [
14
]. A schematic view of
the experiment is shown in Figure 1. Formation of the Mu2e muon beam proceeds as follows.
A primary proton beam with
Ekin
= 8 GeV is extracted from the Fermilab Delivery Ring using
the slow resonant extraction technique [
15
]. The beam has a pulsed timing structure, with 250
ns-wide proton pulses separated by 1695 ns. During each 1.4 s main injector cycle, the proton
pulses are delivered continuously for about 0.4 seconds, then the beam is off for the remainder
of the cycle. On a millisecond time scale, slow resonant extraction results in significant proton
pulse intensity variations [
16
]. The spill duty factor
SDF =
1
/(
1
+σ2
I/I2
0)
, where
σ2
I
is the
variance of the pulse intensity distribution and
I0
is the mean pulse intensity, is expected to be
above 60%.
The beam interacts with the
1.6 interaction lengths-long tungsten production target
positioned in the center of the superconducting production solenoid (PS). The PS graded
magnetic field reaches its maximal strength of 4.6 T downstream of the production target.
Most of the particles produced in
pW
interactions are pions. Particles produced backwards
5 of 38
as well as reflected in the PS magnetic mirror travel through the S-shaped superconducting
transport solenoid (TS) towards the superconducting detector solenoid (DS). Muons are
mainly produced in πµνdecays, which occur in both the PS and TS. The TS magnetic
field is also graded, from
2.5 T at the entrance to about 2.1 T in the region where particles exit
the TS and enter the DS. Collimators at the entrance, center, and exit of the TS (COL1, COL3,
and COL5) define the TS momentum acceptance, greatly reducing the transport efficiency for
particles with momenta above
100
MeV/c
. The curved magnetic field of the TS causes the
charged particles of opposite signs to drift vertically in opposite directions – see, for example,
Ref. [
17
]. The vertical separation reaches its maximum in the center of the TS. A vertically
offset opening of the rotatable COL3 collimator selects the beam sign, passing through either
negative or positive particles. The DS magnetic field has two regions – an upstream region
with a graded magnetic field and a downstream region with a uniform field of 1 T.
y
z
x
COL1 COL3
COL5
Figure 1.
Schematic view of the Mu2e apparatus. The center of the Mu2e reference frame is located in
the COL3 collimator center, its
y
-axis points upwards, the
z
-axis is parallel to the DS axis and points
downstream, and the
x
-axis completes the right-handed reference frame. The particle detectors, the
tracker and the calorimeter, are located in the downstream part of the DS, in a uniform magnetic field of
1 T.
The inner volumes of all three solenoids are kept at near vacuum. Exposed to the intense
proton beam, the radiatively cooled production target will operate at temperatures above
1000
o
C. Maintaining a low tungsten oxidation rate requires the pressure in the PS region
to be kept at
10
5
torr. To optimize the transport efficiency, suppress backgrounds from
secondary interactions, and improve the momentum reconstruction accuracy, the pumping
system for the DS region is designed to achieve 10
4
torr. A thin window in the TS center
separates the two vacuum regions.
The stopping target is positioned in the graded B-field region of the DS. The average
momentum of the muons entering the DS is
50
MeV/c
, and about 1/3 of them stop in the
stopping target made of 37 Al annular foils spaced 2.2 cm apart. Each foil is 105
µ
m thick
and has an inner and an outer radii of 2.2 cm and 7.5 cm respectively. The foils are arranged
co-axially along the DS axis.
Muons reaching the stopping target and stopping there come from decays of pions
with an average momentum
p
100
MeV/c
. The average number of stopped muons per
primary proton, that is the stopped muon rate, determined from the muon beam simulations is
Nµ
POT =
1.6
×
10
3
. This number highly depends on the pion production cross section for the
protons interacting on the tungsten target. Published measurements of the low-momentum
pion production [
18
,
19
] are not consistent with each other, so the simulation-based estimate
of
Nµ
POT
has a large uncertainty. The impact of this uncertainty on the expected sensitivity is
discussed in Section 8.4.
In addition to charged pions, interactions of the proton beam with the production target
also produce a large number of
π0
’s. Photons from
π0γγ
decays converting in the target
摘要:

1of38ArticleMu2eRunISensitivityProjectionsfortheNeutrinolessm!eConversionSearchinAluminum.2of38F.Abdi26,R.Abrams28,J.Adentunji11,W.Ahmed15,R.Alber11,D.Alexander15,D.Allen11,D.Allspach11,C.Alvarez-Garcia23,D.Ambrose26,G.Ambrosio11,A.Amirkhanov31,N.Andreev11,C.M.Ankenbrandt28,R.Appleby23,D.Arnold11,A....

展开>> 收起<<
Mu2e Run I Sensitivity Projections for the Neutrinoless - e- Conversion Search in Aluminum..pdf

共38页,预览5页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:38 页 大小:2.13MB 格式:PDF 时间:2025-05-02

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 38
客服
关注