ANALYTICAL EXPRESSIONS FOR THE EXACT CURVED SURFACE AREA OF A HEMIELLIPSOID VIA MELLIN-BARNES TYPE CONTOUR INTEGRATION M.A. Pathan12 M. I. Qureshi3 Javid Majid3

2025-04-27 0 0 887.07KB 17 页 10玖币
侵权投诉
ANALYTICAL EXPRESSIONS FOR THE EXACT CURVED SURFACE AREA OF
A HEMIELLIPSOID VIA MELLIN-BARNES TYPE CONTOUR INTEGRATION
M.A. Pathan1,2, M. I. Qureshi3, Javid Majid3,
1Centre for Mathematical and Statistical Sciences (CMSS), Peechi,
Thrissur, Kerala-680653, India
2Department of Mathematics, Aligarh Muslim University,
Aligarh, U.P., India
3Department of Applied Sciences and Humanities
Faculty of Engineering and Technology
Jamia Millia Islamia (A Central University), New Delhi-110025, India.
Emails: mapathan@gmail.com, miqureshi delhi@yahoo.co.in
Corresponding author: javidmajid375@gmail.com
Abstract: In this article, we aim at obtaining the analytical expressions (not previously found
and not recorded in the literature) for the exact curved surface area of a hemiellpsoid in terms
of Appell’s double hypergeometric function of first kind. The derivation is based on Mellin-Barnes
type contour integral representations of generalized hypergeometric function pFq(z), Meijer’s G-
function and analytic continuation formula for Gauss function. Moreover, we obtain some special
cases related to ellipsoid, Prolate spheroid and Oblate spheroid. The closed forms for the exact
curved surface area of a hemiellpsoid are also verified numerically by using Mathematica Program.
Keywords: Appell’s function of first kind; Mellin-Barnes contour integral; Meijer’s G-function;
Hemiellipsoid, Ellipsoid, Prolate spheroid, Oblate spheroid; Mathematica Program.
2020 MSC: 33C20, 33C70, 97G30, 97G40.
1. Introduction and preliminaries
For the definition of Pochhammer symbols, power series form of generalized hypergeometric function
pFq(z) and several related results, we refer the beautiful monographs (see, e.g., [1,10,17,18,28,29,33])
Some results recorded in the table of Prudnikov et al.[ [23], p.474, Entry(98) and p.479, Entry(210)]:
2F1
1
2,2;
z
3
2;
=1
2"1
(1 z)+tanh1(z)
p(z)#;|z|<1,(1.1)
2F1
3
2,2;
z
5
2;
=3
2z1
(1 z)tanh1(z)
z;|z|<1.(1.2)
Analytic continuation formula [10, p.63, Eq.(2.1.4(17)), [17], p.249, Eq.(9.5.9), [23], p.454, En-
try(7.3.1(6)), [29], p.36, Eq.(1.8.1.11)]:
When|z|>1, then
2F1
a, b;
z
c;
=Γ(c) Γ(ba)
Γ(b) Γ(ca)(z)a2F1
a, 1 + ac;
1
z
1 + ab;
+
+Γ(c) Γ(ab)
Γ(a) Γ(cb)(z)b2F1
b, 1 + bc;
1
z
1 + ba;
,(1.3)
arXiv:2210.02858v1 [math.GM] 3 Oct 2022
2
where |arg(z)|< π, |arg(1 z)|< π and (ab)6= 0,±1,±2,±3, ....
Mellin-Barnes type contour integral representation of binomial function:
(1 z)a=1F0
a;
z
;
=1
(2πi) Γ(a)Z+i
i
Γ(a+s)Γ(s)(z)sds :z6= 0,(1.4)
where |arg(z)|< π, |z|<1, a C\Z
0and i=p(1).
Appell’s function of first kind [33, p.53, Eq.(4)] is defined as:
F1a;b, c;d;x, y =F1:1;1
1:0;0
a:b;c;
x, y
d:;;
=
X
m,n=0
(a)m+n(b)m(c)nxmyn
(d)m+nm!n!(1.5)
=
X
m=0
(a)m(b)mxm
(d)mm!2F1
a+m, c;
y
d+m;
=
X
n=0
(a)n(c)nyn
(d)nn!2F1
a+n, b;
x
d+n;
(1.6)
Convergence conditions of Appell’s double series F1:
(i) Appell’s series F1is convergent when |x|<1,|y|<1; a, b, c, d C\Z
0.
(ii) Appell’s series F1is absolutely convergent when |x|= 1,|y|= 1; a, b, c, d C\Z
0;R(a+
bd)<0,R(a+cd)<0 and R(a+b+cd)<0.
(iii) Appell’s series F1is conditionally convergent when |x|= 1,|y|= 1; x6= 1, y 6= 1; a, b, c, d
C\Z
0;R(a+bd)<1,R(a+cd)<1 and R(a+b+cd)<2.
(iv) Appell’s series F1is a polynomial If ais a negative integer; b, c, d C\Z
0.
(v) Appell’s series F1is a polynomial If band care negative integers; a, d C\Z
0.
Mellin-Barnes type contour integral representation of Meijer’s G-function ( [33, p.45, Eq.(1)], see
also [10, 18]):
When pqand 1 mq, 0np, then
Gm,n
p,q z
α1, α2, α3, ..., αn;αn+1, ..., αp
β1, β2, β3, ..., βm;βm+1, ..., βq=1
2πi Z+i
iQm
j=1 Γ(βjs)Qn
j=1 Γ(1 αj+s)
Qq
j=m+1 Γ(1 βj+s)Qp
j=n+1 Γ(αjs)(z)sds
=1
2πi Z+i
i
Γ(β1s)...Γ(βms)Γ(1 α1+s)...Γ(1 αn+s)
Γ(1 βm+1 +s)...Γ(1 βq+s)Γ(αn+1 s)...Γ(αps)(z)sds, (1.7)
where z6= 0,(αiβj)6= positive integers, i= 1,2,3, ..., n;j= 1,2,3, ..., m. For details of contours,
see [10, p.207, [18], p.144].
Convergence conditions of Meijer’s G-function:
When Λ = m+np+q
2, ν =Pq
j=1 βjPp
j=1 αj,then
(i) The integral (1.7) is convergent when |arg(z)|<Λπand Λ >0.
(ii) If |arg(z)|= Λπand Λ 0, then the integral (1.7) is absolutely convergent when p=qand
R(ν)<1.
(iii) If |arg(z)|= Λπand Λ 0, then the integral (1.7) is also absolutely convergent, when
p6=q, (qp)σ > R(ν)+1qp
2and s=σ+ik, where σand kare real. σis chosen so
that for k→ ±∞.
For other two types of contours, following will be convergence conditions of the integral (1.7):
3
(iv) The integral (1.7) is convergent if q1 and either p < q, 0<|z|<or p=q, 0<|z|<1.
(v) The integral (1.7) is convergent if p1 and either p > q, 0<|z|<or p=q, |z|>1.
Relations between Meijer’s G- function and 2F1(z) [21, p.61, [36], p.77, Eq.(1)]:
G2 2
2 2 z
1a, 1b;
0, c ab;=Γ(a)Γ(b)Γ(ca)Γ(cb)
Γ(c)2F1
a, b;
1z
c;
,
where |1z|<1 and ca, c b6= 0,1,2, ...
G2 2
2 2 z
a1, a2;
b1, b2;=Γ(1 a1+b1)Γ(1 a1+b2)Γ(1 a2+b1)Γ(1 a2+b2)zb1
Γ(2 a1a2+b1+b2)×
×2F1
1a1+b1,1a2+b1;
1z
2a1a2+b1+b2;
;|1z|<1.(1.8)
When the two dimensional curve i.e, generating curve lying in x-yplane (suppose y=f(x)) is
revolved about x-axis, then equation of generated three dimensional surface will be y2+z2= [f(x)]2.
When the two dimensional curve i.e, generating curve lying in x-yplane (suppose x=F(y)) is
revolved about y-axis, then equation of generated three dimensional surface will be x2+z2= [F(y)]2.
Similarly we can write the equation of generated three dimensional surface, when the curve lies in
y-zplane and z-xplane.
The equation of an ellipse is
x2
a2+y2
b2= 1; a > b > 0.(1.9)
When the above ellipse represented by (1.9) is revolved about major axis (i.e, x-axis), then equation
of generated 3-D surface called Prolate spheroid, will be
x2
a2+y2+z2
b2= 1; a > b > 0.(1.10)
Figure 1. Prolate Spheroid.
When the ellipse represented by (1.9) is revolved about minor axis (i.e, y-axis), then equation of
generated 3-D surface called Oblate spheroid, will be
4
Figure 2. Oblate Spheroid.
x2+z2
a2+y2
b2= 1; a > b > 0.(1.11)
The sphere x2+y2+z2=c2, prolate spheroid and oblate spheroid are the particular cases of the
ellipsoid
x2
a2+y2
b2+z2
c2= 1; a > b > 0.(1.12)
Suppose φ(x, y) = 0 is the projection of the curved surface of three dimensional figure z=f(x, y)
over the x-yplane, then curved surface area is given by
ˆ
S=Z Z
|{z}
over the area
φ(x,y)=0
v
u
u
t(1 + z
x 2
+z
y 2)dx dy. (1.13)
Suppose ψ(y, z) = 0 is the projection of the curved surface of three dimensional figure x=g(y, z)
over the y-zplane, then curved surface area is given by
ˆ
S=Z Z
|{z}
over the area
ψ(y,z)=0
v
u
u
t(1 + x
y 2
+x
z 2)dy dz. (1.14)
A definite integral Zπ
2
θ=0
sinαθcosβθ dθ =
Γα+1
2Γβ+1
2
α+β+2
2,(1.15)
where R(α)>1,R(β)>1.
Motivated by the work of Andrews [2, 3], Bakshi et al. [5], Burchnall et al. [6] and others
[4, 7–9, 11–16, 19, 20, 22, 24–27, 30–32, 34, 35, 37, 38], we evaluated some important definite integrals
Rπ
θ=πcos2θ
β2+sin2θ
λ2s
and R1
r=0
r2s+1
(1r2)sdr with suitable convergence conditions in section 2, by
using Mellin-Barnes type contour integral representation of binomial function 1F0(z), Meijer’s G-
function, classical Beta function of two variables and series manipulation technique. These integrals
摘要:

ANALYTICALEXPRESSIONSFORTHEEXACTCURVEDSURFACEAREAOFAHEMIELLIPSOIDVIAMELLIN-BARNESTYPECONTOURINTEGRATIONM.A.Pathan1;2,M.I.Qureshi3,JavidMajid3;1CentreforMathematicalandStatisticalSciences(CMSS),Peechi,Thrissur,Kerala-680653,India2DepartmentofMathematics,AligarhMuslimUniversity,Aligarh,U.P.,India3Dep...

展开>> 收起<<
ANALYTICAL EXPRESSIONS FOR THE EXACT CURVED SURFACE AREA OF A HEMIELLIPSOID VIA MELLIN-BARNES TYPE CONTOUR INTEGRATION M.A. Pathan12 M. I. Qureshi3 Javid Majid3.pdf

共17页,预览4页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:17 页 大小:887.07KB 格式:PDF 时间:2025-04-27

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 17
客服
关注