ConstGCN Constrained Transmission-based Graph Convolutional Networks for Document-level Relation Extraction Ji Qi1 Bin Xu1 Kaisheng Zeng1 Jinxin Liu1

2025-04-27 0 0 2.48MB 12 页 10玖币
侵权投诉
ConstGCN: Constrained Transmission-based Graph Convolutional
Networks for Document-level Relation Extraction
Ji Qi1, Bin Xu1, Kaisheng Zeng1, Jinxin Liu1,
Jifan Yu1,Qi Gao2,Juanzi Li1,Lei Hou1
1Department of Computer Science and Technology, Tsinghua University
2Beijing Kedong Electric Control System Co. Ltd.
qj20@mails.tsinghua.edu.cn,xubin@tsinghua.edu.cn
Abstract
Document-level relation extraction with graph
neural networks faces a fundamental graph
construction gap between training and infer-
ence - the golden graph structure only avail-
able during training, which causes that most
methods adopt heuristic or syntactic rules to
construct a prior graph as a pseudo proxy. In
this paper, we propose ConstGCN, a novel
graph convolutional network which performs
knowledge-based information propagation be-
tween entities along with all specific rela-
tion spaces without any prior graph construc-
tion. Specifically, it updates the entity rep-
resentation by aggregating information from
all other entities along with each relation
space, thus modeling the relation-aware spa-
tial information. To control the information
flow passing through the indeterminate rela-
tion spaces, we propose to constrain the prop-
agation using transmitting scores learned from
the Noise Contrastive Estimation between
fact triples. Experimental results show that
our method outperforms the previous state-
of-the-art (SOTA) approaches on the DocRE
dataset. The source code is publicly available
at https://github.com/THU-KEG/ConstGCN.
1 Introduction
Document-level relation extraction (DocRE) aims
to extract heterogeneous relational graphs of form
{G = (E,R)}
in document, where the typed en-
tities as nodes and multiple directional semantic
relations as edges. In contrast to sentence-level
RE (Qin et al.,2018;Gao et al.,2020), DocRE
has been a growing interest by extracting relations
beyond the sentence boundaries(Yao et al.,2019)
to ensure the information integrity.
Previous DocRE methods tend to apply the graph
neural networks (GNNs) (Kipf and Welling,2016;
Veliˇ
ckovi´
c et al.,2017) as the core component, and
numerous variant of GNNs have proposed (Guo
et al.,2019;Christopoulou et al.,2019;Zeng et al.,
6
1
2
3
4
5
William H. Nobles (1816 – December 28, 1876) was an American
military officer, businessman, and politician. Nobles was born in
Genesee County . … In 1848, Nobles settled in Saint Paul ,
Wisconsin Territory . … He also served on the Saint Paul City
Council in 1855 and 1856. … Nobles died in Saint Paul , Minnesota.
country of citizenship
place of death



applies to jurisdiction

contains administrative territorial entity
12
1
31 4
5
614
<latexit sha1_base64="3g3cX6GiENbJzL6aysxDBYWcQc4=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy6cdmCfYAtkkyn7dC8SCZKKRW3/oBb/SvxD/QvvDOmoBbRCUnOnHvPmbn3upEnEmlZrzljbn5hcSm/XFhZXVvfKG5uNZIwjRmvs9AL45brJNwTAa9LIT3eimLu+K7Hm+7wXMWbNzxORBhcylHEO77TD0RPMEcS1W77jhy4vTGfXB9dF0tW2dLLnAV2BkrIVjUsvqCNLkIwpPDBEUAS9uAgoecKNixExHUwJi4mJHScY4ICaVPK4pThEDukb592Vxkb0F55JlrN6BSP3piUJvZIE1JeTFidZup4qp0V+5v3WHuqu43o72ZePrESA2L/0k0z/6tTtUj0cKprEFRTpBlVHctcUt0VdXPzS1WSHCLiFO5SPCbMtHLaZ1NrEl276q2j4286U7Fqz7LcFO/qljRg++c4Z0HjoGwfl+3aYalylo06jx3sYp/meYIKLlBFnbwjPOIJz0bNuDXujPvPVCOXabbxbRkPH1DrlDg=</latexit>
e5
<latexit sha1_base64="hKK2+ehg6tAiIQL7L+DRLZVOaqc=">AAACz3icjVHLSsNAFD3GV62vqks3wSK4KomIuiy6cdmCfUBbSpJO26F5MZkopVTc+gNu9a/EP9C/8M6YglpEJyQ5c+49Z+be68Y+T6RlvS4Yi0vLK6u5tfz6xubWdmFnt55EqfBYzYv8SDRdJ2E+D1lNcumzZiyYE7g+a7ijSxVv3DCR8Ci8luOYdQJnEPI+9xxJVLsdOHLo9ids2rW7haJVsvQy54GdgSKyVYkKL2ijhwgeUgRgCCEJ+3CQ0NOCDQsxcR1MiBOEuI4zTJEnbUpZjDIcYkf0HdCulbEh7ZVnotUeneLTK0hp4pA0EeUJwuo0U8dT7azY37wn2lPdbUx/N/MKiJUYEvuXbpb5X52qRaKPc10Dp5pizajqvMwl1V1RNze/VCXJISZO4R7FBWFPK2d9NrUm0bWr3jo6/qYzFav2Xpab4l3dkgZs/xznPKgfl+zTkl09KZYvslHnsI8DHNE8z1DGFSqokXeMRzzh2agat8adcf+Zaixkmj18W8bDB0drlDQ=</latexit>
e1
<latexit sha1_base64="mf74j2/IW0Se52Xig7GUXusDehM=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl047IF+4BWSpJO26F5MZkopVTc+gNu9a/EP9C/8M6YglpEJyQ5c+49Z+be68Y+T6RlveaMhcWl5ZX8amFtfWNzq7i900iiVHis7kV+JFqukzCfh6wuufRZKxbMCVyfNd3RhYo3b5hIeBReyXHMrgNnEPI+9xxJVKcTOHLo9ids2j3uFktW2dLLnAd2BkrIVjUqvqCDHiJ4SBGAIYQk7MNBQk8bNizExF1jQpwgxHWcYYoCaVPKYpThEDui74B27YwNaa88E6326BSfXkFKEwekiShPEFanmTqeamfF/uY90Z7qbmP6u5lXQKzEkNi/dLPM/+pULRJ9nOkaONUUa0ZV52Uuqe6Kurn5pSpJDjFxCvcoLgh7Wjnrs6k1ia5d9dbR8TedqVi197LcFO/qljRg++c450HjqGyflO3acalyno06jz3s45DmeYoKLlFFnbxjPOIJz0bNuDXujPvPVCOXaXbxbRkPH06LlDc=</latexit>
e4
ConstGCNTransE
Vanilla GCN
<latexit sha1_base64="WNZup3jNKI3mkjofzc2joRDPSEo=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6rLopsuK9gG1lGQ6rUPTJEwmSimCP+BWP038A/0L74wpqEV0QpIz595zZu69fhyIRDnOa85aWFxaXsmvFtbWNza3its7zSRKJeMNFgWRbPtewgMR8oYSKuDtWHJv7Ae85Y/Odbx1y2UiovBKTWLeHXvDUAwE8xRRl7JX6RVLTtkxy54HbgZKyFY9Kr7gGn1EYEgxBkcIRTiAh4SeDlw4iInrYkqcJCRMnOMeBdKmlMUpwyN2RN8h7ToZG9JeeyZGzeiUgF5JShsHpIkoTxLWp9kmnhpnzf7mPTWe+m4T+vuZ15hYhRti/9LNMv+r07UoDHBqahBUU2wYXR3LXFLTFX1z+0tVihxi4jTuU1wSZkY567NtNImpXffWM/E3k6lZvWdZbop3fUsasPtznPOgeVR2j8vuRaVUPctGncce9nFI8zxBFTXU0SDvIR7xhGerZoVWat19plq5TLOLb8t6+AAI15Ak</latexit>
r4
<latexit sha1_base64="8Id/PkXGBSq/LZXd0VlV5E3rxbY=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl002VF+4BaSjKd1sG8mEyUUgR/wK1+mvgH+hfeGVNQi+iEJGfOvefM3Hv9JBCpcpzXgjU3v7C4VFwurayurW+UN7daaZxJxpssDmLZ8b2UByLiTSVUwDuJ5F7oB7zt35zpePuWy1TE0aUaJ7wXeqNIDAXzFFEXsu/2yxWn6phlzwI3BxXkqxGXX3CFAWIwZAjBEUERDuAhpacLFw4S4nqYECcJCRPnuEeJtBllccrwiL2h74h23ZyNaK89U6NmdEpArySljT3SxJQnCevTbBPPjLNmf/OeGE99tzH9/dwrJFbhmti/dNPM/+p0LQpDnJgaBNWUGEZXx3KXzHRF39z+UpUih4Q4jQcUl4SZUU77bBtNamrXvfVM/M1kalbvWZ6b4V3fkgbs/hznLGgdVN2jqnt+WKmd5qMuYge72Kd5HqOGOhpokvcIj3jCs1W3Iiuz7j5TrUKu2ca3ZT18AAG3kCE=</latexit>
r1
<latexit sha1_base64="tz2z0KwiGBi+J5SN//EPzof1uvE=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl002VF+4BaSjKd1tA0CZOJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePwmDVDrOa86am19YXMovF1ZW19Y3iptbjTTOBON1FoexaPleysMg4nUZyJC3EsG9kR/ypj88V/HmLRdpEEdXcpzwzsgbREE/YJ4k6lJ0D7vFklN29LJngWtACWbV4uILrtFDDIYMI3BEkIRDeEjpacOFg4S4DibECUKBjnPco0DajLI4ZXjEDuk7oF3bsBHtlWeq1YxOCekVpLSxR5qY8gRhdZqt45l2Vuxv3hPtqe42pr9vvEbEStwQ+5dumvlfnapFoo9TXUNANSWaUdUx45Lprqib21+qkuSQEKdwj+KCMNPKaZ9trUl17aq3no6/6UzFqj0zuRne1S1pwO7Pcc6CxkHZPS67F0elypkZdR472MU+zfMEFVRRQ528B3jEE56tqhVZmXX3mWrljGYb35b18AEGd5Aj</latexit>
r3
Golden Graph
<latexit sha1_base64="HgDj9YZNIBSZuISo1y+q84EI7KE=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl047IF+wBbJJlO29C8mEyUUipu/QG3+lfiH+hfeGdMQS2iE5KcOfeeM3PvdWPfS6RlveaMufmFxaX8cmFldW19o7i51UiiVDBeZ5EfiZbrJNz3Ql6XnvR5KxbcCVyfN93huYo3b7hIvCi8lKOYdwKnH3o9jzmSqHY7cOTA7Y3F5PrwuliyypZe5iywM1BCtqpR8QVtdBGBIUUAjhCSsA8HCT1XsGEhJq6DMXGCkKfjHBMUSJtSFqcMh9ghffu0u8rYkPbKM9FqRqf49ApSmtgjTUR5grA6zdTxVDsr9jfvsfZUdxvR3828AmIlBsT+pZtm/lenapHo4VTX4FFNsWZUdSxzSXVX1M3NL1VJcoiJU7hLcUGYaeW0z6bWJLp21VtHx990pmLVnmW5Kd7VLWnA9s9xzoLGQdk+Ltu1o1LlLBt1HjvYxT7N8wQVXKCKOnnHeMQTno2acWvcGfefqUYu02zj2zIePgBrMpRD</latexit>
r3
<latexit sha1_base64="mf74j2/IW0Se52Xig7GUXusDehM=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl047IF+4BWSpJO26F5MZkopVTc+gNu9a/EP9C/8M6YglpEJyQ5c+49Z+be68Y+T6RlveaMhcWl5ZX8amFtfWNzq7i900iiVHis7kV+JFqukzCfh6wuufRZKxbMCVyfNd3RhYo3b5hIeBReyXHMrgNnEPI+9xxJVKcTOHLo9ids2j3uFktW2dLLnAd2BkrIVjUqvqCDHiJ4SBGAIYQk7MNBQk8bNizExF1jQpwgxHWcYYoCaVPKYpThEDui74B27YwNaa88E6326BSfXkFKEwekiShPEFanmTqeamfF/uY90Z7qbmP6u5lXQKzEkNi/dLPM/+pULRJ9nOkaONUUa0ZV52Uuqe6Kurn5pSpJDjFxCvcoLgh7Wjnrs6k1ia5d9dbR8TedqVi197LcFO/qljRg++c450HjqGyflO3acalyno06jz3s45DmeYoKLlFFnbxjPOIJz0bNuDXujPvPVCOXaXbxbRkPH06LlDc=</latexit>
e4
<latexit sha1_base64="3BS0vNbRhY+kBDmoJNnphBOyPFk=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl047IF+4BWSjKdtqF5kUyUUipu/QG3+lfiH+hfeGecglpEJyQ5c+49Z+be68a+lwrLes0ZC4tLyyv51cLa+sbmVnF7p5FGWcJ4nUV+lLRcJ+W+F/K68ITPW3HCncD1edMdXch484YnqReFV2Ic8+vAGYRe32OOIKrTCRwxdPsTPu0edYslq2ypZc4DW4MS9KpGxRd00EMEhgwBOEIIwj4cpPS0YcNCTNw1JsQlhDwV55iiQNqMsjhlOMSO6DugXVuzIe2lZ6rUjE7x6U1IaeKANBHlJYTlaaaKZ8pZsr95T5SnvNuY/q72CogVGBL7l26W+V+drEWgjzNVg0c1xYqR1THtkqmuyJubX6oS5BATJ3GP4glhppSzPptKk6raZW8dFX9TmZKVe6ZzM7zLW9KA7Z/jnAeNo7J9UrZrx6XKuR51HnvYxyHN8xQVXKKKOnnHeMQTno2acWvcGfefqUZOa3bxbRkPH0nLlDU=</latexit>
e2
<latexit sha1_base64="FxdbzfKNUjk5MxIl/W14uaux3Dg=">AAACz3icjVHLSsNAFD3GV62vqks3wSK4KolIdVl047IF+4BWyiSdtkPzIpkopVTc+gNu9a/EP9C/8M6YglpEJyQ5c+49Z+be60SeSKRlvS4Yi0vLK6u5tfz6xubWdmFnt5GEaezyuht6YdxyWMI9EfC6FNLjrSjmzHc83nRGFyrevOFxIsLgSo4jfu2zQSD6wmWSqE7HZ3Lo9Cd82i13C0WrZOllzgM7A0VkqxoWXtBBDyFcpPDBEUAS9sCQ0NOGDQsRcdeYEBcTEjrOMUWetCllccpgxI7oO6BdO2MD2ivPRKtdOsWjNyaliUPShJQXE1anmTqeamfF/uY90Z7qbmP6O5mXT6zEkNi/dLPM/+pULRJ9nOkaBNUUaUZV52Yuqe6Kurn5pSpJDhFxCvcoHhN2tXLWZ1NrEl276i3T8TedqVi1d7PcFO/qljRg++c450HjuGSXS3btpFg5z0adwz4OcETzPEUFl6iiTt4RHvGEZ6Nm3Bp3xv1nqrGQafbwbRkPH1NLlDk=</latexit>
e6
<latexit sha1_base64="UlOOTzREx9USg+FzvORCScG+re0=">AAACz3icjVHLSsNAFD3GV62vqks3wSK4KomIuiy6cdmCfUBbSpJO26F5MZkopVTc+gNu9a/EP9C/8M6YglpEJyQ5c+49Z+be68Y+T6RlvS4Yi0vLK6u5tfz6xubWdmFnt55EqfBYzYv8SDRdJ2E+D1lNcumzZiyYE7g+a7ijSxVv3DCR8Ci8luOYdQJnEPI+9xxJVLsdOHLo9idi2rW7haJVsvQy54GdgSKyVYkKL2ijhwgeUgRgCCEJ+3CQ0NOCDQsxcR1MiBOEuI4zTJEnbUpZjDIcYkf0HdCulbEh7ZVnotUeneLTK0hp4pA0EeUJwuo0U8dT7azY37wn2lPdbUx/N/MKiJUYEvuXbpb5X52qRaKPc10Dp5pizajqvMwl1V1RNze/VCXJISZO4R7FBWFPK2d9NrUm0bWr3jo6/qYzFav2Xpab4l3dkgZs/xznPKgfl+zTkl09KZYvslHnsI8DHNE8z1DGFSqokXeMRzzh2agat8adcf+Zaixkmj18W8bDB2ZylEE=</latexit>
r1
<latexit sha1_base64="epW065DkCijuNdlx1J2jzq8XnGo=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkUQhJJIUZdFN66kgn1IrSWZTmtoXiQToZRu/QG3+l3iH+hfeGecglpEJyQ5c+49Z+be68a+lwrLes0Zc/MLi0v55cLK6tr6RnFzq5FGWcJ4nUV+lLRcJ+W+F/K68ITPW3HCncD1edMdnsl4854nqReFV2IU807gDEKv7zFHEHXNb8fiwJ50K91iySpbapmzwNagBL1qUfEFN+ghAkOGABwhBGEfDlJ62rBhISaugzFxCSFPxTkmKJA2oyxOGQ6xQ/oOaNfWbEh76ZkqNaNTfHoTUprYI01EeQlheZqp4plyluxv3mPlKe82or+rvQJiBe6I/Us3zfyvTtYi0MeJqsGjmmLFyOqYdslUV+TNzS9VCXKIiZO4R/GEMFPKaZ9NpUlV7bK3joq/qUzJyj3TuRne5S1pwPbPcc6CxmHZPirbl5VS9VSPOo8d7GKf5nmMKs5RQ528AzziCc/GhSGMsTH5TDVyWrONb8t4+ADzbZJ5</latexit>
et+1
4
<latexit sha1_base64="h1xuA+6I1ZXKacLcjsHtYrGRP8g=">AAACznicjVHLSsNAFD2Nr1pfVZdugkUQhJJIUZdFNy4r2AfUWpLptIbmxWRSKKW49Qfc6meJf6B/4Z0xBbWITkhy5txz7sy91419L5GW9ZozFhaXllfyq4W19Y3NreL2TiOJUsF4nUV+JFquk3DfC3ldetLnrVhwJ3B93nSHFyreHHGReFF4Lccx7wTOIPT6HnMkUW1+K7u2eWSKbqVbLFllSy9zHtgZKCFbtaj4ghv0EIEhRQCOEJKwDwcJPW3YsBAT18GEOEHI03GOKQrkTUnFSeEQO6TvgHbtjA1pr3Im2s3oFJ9eQU4TB+SJSCcIq9NMHU91ZsX+lnuic6q7jenvZrkCYiXuiP3LN1P+16dqkejjTNfgUU2xZlR1LMuS6q6om5tfqpKUISZO4R7FBWGmnbM+m9qT6NpVbx0df9NKxao9y7Qp3tUtacD2z3HOg8Zx2T4p21eVUvU8G3Uee9jHIc3zFFVcooa67vgjnvBs1IyRMTXuP6VGLvPs4tsyHj4AfpSSpg==</latexit>
et
1+r4
<latexit sha1_base64="Oq1ozwm6/hv0cNj8f5Wbduvf3nc=">AAACznicjVHLSsNAFD2Nr1pfVZdugkUQhJKIVJdFNy4r2AfUWpLptIbmxWRSKKW49Qfc6meJf6B/4Z0xBbWITkhy5txz7sy91419L5GW9ZozFhaXllfyq4W19Y3NreL2TiOJUsF4nUV+JFquk3DfC3ldetLnrVhwJ3B93nSHFyreHHGReFF4Lccx7wTOIPT6HnMkUW1+K7sV88gUXbtbLFllSy9zHtgZKCFbtaj4ghv0EIEhRQCOEJKwDwcJPW3YsBAT18GEOEHI03GOKQrkTUnFSeEQO6TvgHbtjA1pr3Im2s3oFJ9eQU4TB+SJSCcIq9NMHU91ZsX+lnuic6q7jenvZrkCYiXuiP3LN1P+16dqkejjTNfgUU2xZlR1LMuS6q6om5tfqpKUISZO4R7FBWGmnbM+m9qT6NpVbx0df9NKxao9y7Qp3tUtacD2z3HOg8Zx2a6U7auTUvU8G3Uee9jHIc3zFFVcooa67vgjnvBs1IyRMTXuP6VGLvPs4tsyHj4Ag3KSqA==</latexit>
et
6+r1
<latexit sha1_base64="1VywvpD9Wp12CM2nHoOmxldvew4=">AAACznicjVHLSsNAFD2Nr1pfVZdugkVwY0lU1GXRjcsK9gG1lmQ6raF5MZkUSilu/QG3+lniH+hfeGdMQS2iE5KcOfecO3PvdWPfS6RlveaMufmFxaX8cmFldW19o7i5VU+iVDBeY5EfiabrJNz3Ql6TnvR5MxbcCVyfN9zBhYo3hlwkXhRey1HM24HTD72exxxJVIvfys6heWCKzlGnWLLKll7mLLAzUEK2qlHxBTfoIgJDigAcISRhHw4SelqwYSEmro0xcYKQp+McExTIm5KKk8IhdkDfPu1aGRvSXuVMtJvRKT69gpwm9sgTkU4QVqeZOp7qzIr9LfdY51R3G9HfzXIFxErcEfuXb6r8r0/VItHDma7Bo5pizajqWJYl1V1RNze/VCUpQ0ycwl2KC8JMO6d9NrUn0bWr3jo6/qaVilV7lmlTvKtb0oDtn+OcBfXDsn1Stq+OS5XzbNR57GAX+zTPU1RwiSpquuOPeMKzUTWGxsS4/5QaucyzjW/LePgAg2KSqA==</latexit>
et
2r3
<latexit sha1_base64="epW065DkCijuNdlx1J2jzq8XnGo=">AAACzHicjVHLSsNAFD2Nr1pfVZdugkUQhJJIUZdFN66kgn1IrSWZTmtoXiQToZRu/QG3+l3iH+hfeGecglpEJyQ5c+49Z+be68a+lwrLes0Zc/MLi0v55cLK6tr6RnFzq5FGWcJ4nUV+lLRcJ+W+F/K68ITPW3HCncD1edMdnsl4854nqReFV2IU807gDEKv7zFHEHXNb8fiwJ50K91iySpbapmzwNagBL1qUfEFN+ghAkOGABwhBGEfDlJ62rBhISaugzFxCSFPxTkmKJA2oyxOGQ6xQ/oOaNfWbEh76ZkqNaNTfHoTUprYI01EeQlheZqp4plyluxv3mPlKe82or+rvQJiBe6I/Us3zfyvTtYi0MeJqsGjmmLFyOqYdslUV+TNzS9VCXKIiZO4R/GEMFPKaZ9NpUlV7bK3joq/qUzJyj3TuRne5S1pwPbPcc6CxmHZPirbl5VS9VSPOo8d7GKf5nmMKs5RQ528AzziCc/GhSGMsTH5TDVyWrONb8t4+ADzbZJ5</latexit>
et+1
4
<latexit sha1_base64="6l1Xo+60iKYDKQkWTBqnF6/6F4E=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl0I64qmLagtSTTaR2aJmEyUUpx4w+41S8T/0D/wjtjCmoRnZDkzLn3nJl7b5CEIlWO81qwZmbn5heKi6Wl5ZXVtfL6RiONM8m4x+Iwlq3AT3koIu4poULeSiT3h0HIm8HgRMebt1ymIo4u1Cjh7aHfj0RPMF8R5fFr1XE75YpTdcyyp4GbgwryVY/LL7hCFzEYMgzBEUERDuEjpecSLhwkxLUxJk4SEibOcY8SaTPK4pThEzugb592lzkb0V57pkbN6JSQXklKGzukiSlPEtan2SaeGWfN/uY9Np76biP6B7nXkFiFG2L/0k0y/6vTtSj0cGRqEFRTYhhdHctdMtMVfXP7S1WKHBLiNO5SXBJmRjnps200qald99Y38TeTqVm9Z3luhnd9Sxqw+3Oc06CxV3UPqu75fqV2nI+6iC1sY5fmeYgaTlGHR94Cj3jCs3VmJdadNfpMtQq5ZhPflvXwASPxkPo=</latexit>
et
1
<latexit sha1_base64="hbFYdtSVtnoj4OGVTxdZjH7rHBM=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy6EVcVTFuotSTTaR2aF8lEKcWNP+BWv0z8A/0L74wpqEV0QpIz595zZu69XuyLVFrWa8GYmZ2bXygulpaWV1bXyusbjTTKEsYdFvlR0vLclPsi5I4U0uetOOFu4Pm86Q1PVbx5y5NUROGlHMW8E7iDUPQFcyVRDr+W3YNuuWJVLb3MaWDnoIJ81aPyC67QQwSGDAE4QkjCPlyk9LRhw0JMXAdj4hJCQsc57lEibUZZnDJcYof0HdCunbMh7ZVnqtWMTvHpTUhpYoc0EeUlhNVppo5n2lmxv3mPtae624j+Xu4VECtxQ+xfuknmf3WqFok+jnUNgmqKNaOqY7lLpruibm5+qUqSQ0ycwj2KJ4SZVk76bGpNqmtXvXV1/E1nKlbtWZ6b4V3dkgZs/xznNGjsVe3Dqn2xX6md5KMuYgvb2KV5HqGGM9ThkLfAI57wbJwbsXFnjD5TjUKu2cS3ZTx8AC1xkP4=</latexit>
et
5
Figure 1: An example of DocRED document (bottom)
with one of its golden multi-relational graphs (upper
left). On the upper right, compared to the vanilla GNNs
updating entity by accumulating representations of syn-
tactically adjacent entities on the pseudo graph, the
proposed ConstGNN models the relation-aware struc-
tural representation of entity by performing knowledge-
based information propagation.
2020;Xu et al.,2021). Similar to traditional GNNs
modeled on the observable graph structures (e.g.
social networks (Huang et al.,2019) and academic
citation network (Feng et al.,2020)), these mod-
els all require a pre-specified graph construction.
They mainly either rely on the heuristic rules of
intra(inter)-sentential information of entities and
mentions (Zeng et al.,2020;Christopoulou et al.,
2019), or leverage the syntactic rules of depen-
dency paths built by an external parser (Sahu et al.,
2019;Guo et al.,2019) to serve as the prior graph
structure of GNNs. We consider such graph struc-
ture as a pseudo graph structure, for it establishes
each edge between a pair of entities as a binary
association based on the task-independent auxiliary
information (heuristic/syntactic rules).
However, the golden edges that describe the re-
lationships between two entities contain multi-type
abundant semantics. Thus, previous approaches
suffer from two major intrinsic issues. First,
Hin-
dered Propagation Issue
: the construction of the
arXiv:2210.03949v1 [cs.CL] 8 Oct 2022
pseudo graph structure ignores many actual rela-
tional edges between entities, which hinders the
effective information acquisition and dissemina-
tion. Second,
Noisy Representation Issue
: the
simple information accumulation based on the bi-
nary associative edges on the pseudo graph makes
them struggle to model relation-aware structural
knowledge, which further results in noisy represen-
tations and harms the performance. For example,
in Figure 1, the entity Saint Pauls representaion
is updated by simply accumulating the representa-
tions of its syntactically adjacent entities, making it
similar to entities Nobles and Wisconsin Territory,
while they are completely different entities with
relation connections place_of_birth.
Instead of introducing the prior pseudo
graph structures, we present
ConstGCN
, a
novel
Cons
trained
T
ransmission-based
G
raph
C
onvolutional
N
etwork that performs knowledge-
based information propagation between entities
along with all relation spaces without any prior
graph construction which explicitly models the se-
mantics of various relationships. Specifically, we
innovatively propose the knowledge-based infor-
mation propagation for DocRE by leveraging the
flexible Knowledge Graph Embedding (KGE) ap-
proaches (Wang et al.,2017) into a general trans-
mitting operation. At each graph convolution step,
it updates the entity representation by aggregating
knowledge-based information broadcasted from
neighbor entities along with all relation spaces.
Thus, entity representations containing the relation-
aware structural semantics are learned effectively
and directly. Due to the agnostic nature of golden
graph structure in documents, it is difficult to rig-
orously follow the relational paths to transmit in-
formation. We propose the transmitting scores to
constrain the information flow through the inde-
terminate relational edges, where the scores are
learned jointly from the Noise Contrastive Estima-
tion (NCE) (Mikolov et al.,2013). It allows the
model to learn the semantic representations while
maintaining the original relation-aware structural
information. As shown in figure 1, compared to
the vanilla GNNs, our model learns the represen-
tations with an isomorphic structure to the golden
heterogeneous graph in the document.
We conduct extensive experiments on DocRED,
a large-scale human-annotated dataset including
heterogeneous graphs among entities in each docu-
ment. The results show that our model achieves the
SOTA performance compared to previous methods.
In addition to the proposed graph convolutional
network, we further demonstrated the compatibil-
ity of representation learning from documents and
knowledge graphs. The contributions of our work
are summarized as follows:
We present a novel graph convolutional net-
work, ConstGCN, that can naturally model the
heterogeneous graph structure including inde-
terminate edges based on knowledge-based
information propagation.
We propose the approach of constrained trans-
mission, which allows the model to learn the
entity representations while maintaining the
original relation-aware structural information.
We conduct experiments on the DocRE task
and achieve the SOTA performance. This
work also demonstrates the compatibility of
representation learning from documents and
knowledge graphs.
2 Preliminary
2.1 Document-level Relation Extraction
Given a textual document
D={wi}|D|
i=1
consist-
ing of a sequence of words and a set of typed en-
tities
E={ei}|E|
i=1
, where each entity refers to
a set of mentions
e={mi}|e|
i=1
which is a se-
quence of words in the document. The task of
DocRE aims to extract the heterogeneous graphs
{(ei, rk, ej)|ei, ej∈ E, rk∈ R}
, in which a pair
of entities nodes
ei, ej
may have multiple edges
and each edge
rk
refers to a specific relation type,
and Ris the set of predefined relations.
2.2 Knowledge Graph Embedding
Given a knowledge graph (KG) consisting of a col-
lection of triples
G={(ei, rk, ej)|ei, ej∈ E, rk
R}
with the sets of pre-defined types. The task
of KGE aims to learn the vectorial representations
ei,rk,ej
modeling the heterogeneous structural in-
formation based on a scoring function
dr
. Depend-
ing on the scoring function used, typical methods
can be divided into two categories: the translational
distance-based approaches e.g. (TransE(Bordes
et al.) and RotatE(Sun et al.,2019)) and the
semantic matching-based approaches (e.g. Dist-
Mult(Yang et al.,2014) and ComplEx(Trouillon
et al.,2016)). As shown in table 1, the key idea be-
hind both categories of methods is to transmit the
6
1
2
3
4
5
William H. Nobles (1816 – December 28,
1876) was an American military officer …
. Nobles was born in Genesee County … .
In 1848, Nobles settled in Saint Paul ,
Wisconsin Territory . … He also served on
the Saint Paul City Council in 1855 … .
1
2
1
31
4
5
6
PLM Encoder
<latexit sha1_base64="8Id/PkXGBSq/LZXd0VlV5E3rxbY=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl002VF+4BaSjKd1sG8mEyUUgR/wK1+mvgH+hfeGVNQi+iEJGfOvefM3Hv9JBCpcpzXgjU3v7C4VFwurayurW+UN7daaZxJxpssDmLZ8b2UByLiTSVUwDuJ5F7oB7zt35zpePuWy1TE0aUaJ7wXeqNIDAXzFFEXsu/2yxWn6phlzwI3BxXkqxGXX3CFAWIwZAjBEUERDuAhpacLFw4S4nqYECcJCRPnuEeJtBllccrwiL2h74h23ZyNaK89U6NmdEpArySljT3SxJQnCevTbBPPjLNmf/OeGE99tzH9/dwrJFbhmti/dNPM/+p0LQpDnJgaBNWUGEZXx3KXzHRF39z+UpUih4Q4jQcUl4SZUU77bBtNamrXvfVM/M1kalbvWZ6b4V3fkgbs/hznLGgdVN2jqnt+WKmd5qMuYge72Kd5HqOGOhpokvcIj3jCs1W3Iiuz7j5TrUKu2ca3ZT18AAG3kCE=</latexit>
r1
<latexit sha1_base64="62GNLJ8L9VZZiSRLaUdYTG84BQI=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZIi6rLopsuK9gG1lGQ6rUPTJEwmSimCP+BWP038A/0L74wpqEV0QpIz595zZu69fhyIRDnOa85aWFxaXsmvFtbWNza3its7zSRKJeMNFgWRbPtewgMR8oYSKuDtWHJv7Ae85Y/Odbx1y2UiovBKTWLeHXvDUAwE8xRRl7JX6RVLTtkxy54HbgZKyFY9Kr7gGn1EYEgxBkcIRTiAh4SeDlw4iInrYkqcJCRMnOMeBdKmlMUpwyN2RN8h7ToZG9JeeyZGzeiUgF5JShsHpIkoTxLWp9kmnhpnzf7mPTWe+m4T+vuZ15hYhRti/9LNMv+r07UoDHBqahBUU2wYXR3LXFLTFX1z+0tVihxi4jTuU1wSZkY567NtNImpXffWM/E3k6lZvWdZbop3fUsasPtznPOgWSm7x2X34qhUPctGncce9nFI8zxBFTXU0SDvIR7xhGerZoVWat19plq5TLOLb8t6+AAEF5Ai</latexit>
r2
6
1
2
3
4
5
<latexit sha1_base64="879FA3qr4V2y50oXSpeYtyGl208=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl040aoYB9QS0nSaR2aZkJmItTapT/gVv9L/AP9C++MKahFdEKSM+eec2fuvX4ccqkc5zVnzc0vLC7llwsrq2vrG8XNrboUaRKwWiBCkTR9T7KQR6ymuApZM06YN/RD1vAHZzreuGWJ5CK6UqOYtYdeP+I9HniKqGavM46FCCedYskpO2bZs8DNQAnZqoriC67RhUCAFEMwRFCEQ3iQ9LTgwkFMXBtj4hJC3MQZJiiQNyUVI4VH7IC+fdq1Mjaivc4pjTugU0J6E3La2COPIF1CWJ9mm3hqMmv2t9xjk1PfbUR/P8s1JFbhhti/fFPlf326FoUeTkwNnGqKDaOrC7IsqemKvrn9pSpFGWLiNO5SPCEcGOe0z7bxSFO77q1n4m9GqVm9DzJtind9Sxqw+3Ocs6B+UHaPyu7lYalymo06jx3sYp/meYwKzlFFzczxEU94ti4sad1Z959SK5d5tvFtWQ8fn1iSyA==</latexit>
fpool
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
country of citizenship
place of death



applies to jurisdiction

contains administrative territorial entity
<latexit sha1_base64="WNZup3jNKI3mkjofzc2joRDPSEo=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6rLopsuK9gG1lGQ6rUPTJEwmSimCP+BWP038A/0L74wpqEV0QpIz595zZu69fhyIRDnOa85aWFxaXsmvFtbWNza3its7zSRKJeMNFgWRbPtewgMR8oYSKuDtWHJv7Ae85Y/Odbx1y2UiovBKTWLeHXvDUAwE8xRRl7JX6RVLTtkxy54HbgZKyFY9Kr7gGn1EYEgxBkcIRTiAh4SeDlw4iInrYkqcJCRMnOMeBdKmlMUpwyN2RN8h7ToZG9JeeyZGzeiUgF5JShsHpIkoTxLWp9kmnhpnzf7mPTWe+m4T+vuZ15hYhRti/9LNMv+r07UoDHBqahBUU2wYXR3LXFLTFX1z+0tVihxi4jTuU1wSZkY567NtNImpXffWM/E3k6lZvWdZbop3fUsasPtznPOgeVR2j8vuRaVUPctGncce9nFI8zxBFTXU0SDvIR7xhGerZoVWat19plq5TLOLb8t6+AAI15Ak</latexit>
r4
<latexit sha1_base64="8Id/PkXGBSq/LZXd0VlV5E3rxbY=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl002VF+4BaSjKd1sG8mEyUUgR/wK1+mvgH+hfeGVNQi+iEJGfOvefM3Hv9JBCpcpzXgjU3v7C4VFwurayurW+UN7daaZxJxpssDmLZ8b2UByLiTSVUwDuJ5F7oB7zt35zpePuWy1TE0aUaJ7wXeqNIDAXzFFEXsu/2yxWn6phlzwI3BxXkqxGXX3CFAWIwZAjBEUERDuAhpacLFw4S4nqYECcJCRPnuEeJtBllccrwiL2h74h23ZyNaK89U6NmdEpArySljT3SxJQnCevTbBPPjLNmf/OeGE99tzH9/dwrJFbhmti/dNPM/+p0LQpDnJgaBNWUGEZXx3KXzHRF39z+UpUih4Q4jQcUl4SZUU77bBtNamrXvfVM/M1kalbvWZ6b4V3fkgbs/hznLGgdVN2jqnt+WKmd5qMuYge72Kd5HqOGOhpokvcIj3jCs1W3Iiuz7j5TrUKu2ca3ZT18AAG3kCE=</latexit>
r1
<latexit sha1_base64="tz2z0KwiGBi+J5SN//EPzof1uvE=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl002VF+4BaSjKd1tA0CZOJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePwmDVDrOa86am19YXMovF1ZW19Y3iptbjTTOBON1FoexaPleysMg4nUZyJC3EsG9kR/ypj88V/HmLRdpEEdXcpzwzsgbREE/YJ4k6lJ0D7vFklN29LJngWtACWbV4uILrtFDDIYMI3BEkIRDeEjpacOFg4S4DibECUKBjnPco0DajLI4ZXjEDuk7oF3bsBHtlWeq1YxOCekVpLSxR5qY8gRhdZqt45l2Vuxv3hPtqe42pr9vvEbEStwQ+5dumvlfnapFoo9TXUNANSWaUdUx45Lprqib21+qkuSQEKdwj+KCMNPKaZ9trUl17aq3no6/6UzFqj0zuRne1S1pwO7Pcc6CxkHZPS67F0elypkZdR472MU+zfMEFVRRQ528B3jEE56tqhVZmXX3mWrljGYb35b18AEGd5Aj</latexit>
r3
Expected Output Graph
Input Document
<latexit sha1_base64="8Id/PkXGBSq/LZXd0VlV5E3rxbY=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl002VF+4BaSjKd1sG8mEyUUgR/wK1+mvgH+hfeGVNQi+iEJGfOvefM3Hv9JBCpcpzXgjU3v7C4VFwurayurW+UN7daaZxJxpssDmLZ8b2UByLiTSVUwDuJ5F7oB7zt35zpePuWy1TE0aUaJ7wXeqNIDAXzFFEXsu/2yxWn6phlzwI3BxXkqxGXX3CFAWIwZAjBEUERDuAhpacLFw4S4nqYECcJCRPnuEeJtBllccrwiL2h74h23ZyNaK89U6NmdEpArySljT3SxJQnCevTbBPPjLNmf/OeGE99tzH9/dwrJFbhmti/dNPM/+p0LQpDnJgaBNWUGEZXx3KXzHRF39z+UpUih4Q4jQcUl4SZUU77bBtNamrXvfVM/M1kalbvWZ6b4V3fkgbs/hznLGgdVN2jqnt+WKmd5qMuYge72Kd5HqOGOhpokvcIj3jCs1W3Iiuz7j5TrUKu2ca3ZT18AAG3kCE=</latexit>
r1
<latexit sha1_base64="tz2z0KwiGBi+J5SN//EPzof1uvE=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl002VF+4BaSjKd1tA0CZOJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePwmDVDrOa86am19YXMovF1ZW19Y3iptbjTTOBON1FoexaPleysMg4nUZyJC3EsG9kR/ypj88V/HmLRdpEEdXcpzwzsgbREE/YJ4k6lJ0D7vFklN29LJngWtACWbV4uILrtFDDIYMI3BEkIRDeEjpacOFg4S4DibECUKBjnPco0DajLI4ZXjEDuk7oF3bsBHtlWeq1YxOCekVpLSxR5qY8gRhdZqt45l2Vuxv3hPtqe42pr9vvEbEStwQ+5dumvlfnapFoo9TXUNANSWaUdUx45Lprqib21+qkuSQEKdwj+KCMNPKaZ9trUl17aq3no6/6UzFqj0zuRne1S1pwO7Pcc6CxkHZPS67F0elypkZdR472MU+zfMEFVRRQ528B3jEE56tqhVZmXX3mWrljGYb35b18AEGd5Aj</latexit>
r3
<latexit sha1_base64="WNZup3jNKI3mkjofzc2joRDPSEo=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIp6rLopsuK9gG1lGQ6rUPTJEwmSimCP+BWP038A/0L74wpqEV0QpIz595zZu69fhyIRDnOa85aWFxaXsmvFtbWNza3its7zSRKJeMNFgWRbPtewgMR8oYSKuDtWHJv7Ae85Y/Odbx1y2UiovBKTWLeHXvDUAwE8xRRl7JX6RVLTtkxy54HbgZKyFY9Kr7gGn1EYEgxBkcIRTiAh4SeDlw4iInrYkqcJCRMnOMeBdKmlMUpwyN2RN8h7ToZG9JeeyZGzeiUgF5JShsHpIkoTxLWp9kmnhpnzf7mPTWe+m4T+vuZ15hYhRti/9LNMv+r07UoDHBqahBUU2wYXR3LXFLTFX1z+0tVihxi4jTuU1wSZkY567NtNImpXffWM/E3k6lZvWdZbop3fUsasPtznPOgeVR2j8vuRaVUPctGncce9nFI8zxBFTXU0SDvIR7xhGerZoVWat19plq5TLOLb8t6+AAI15Ak</latexit>
r4
<latexit sha1_base64="c+apyjzc+qyZl5y3XBN5IUQKERM=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy66bKifUAtJZlOa2iahMlEKUXwB9zqp4l/oH/hnXEKahGdkOTMufecmXuvn4RBKh3nNWfNzS8sLuWXCyura+sbxc2tRhpngvE6i8NYtHwv5WEQ8boMZMhbieDeyA950x+eq3jzlos0iKMrOU54Z+QNoqAfME8SdSm6R91iySk7etmzwDWgBLNqcfEF1+ghBkOGETgiSMIhPKT0tOHCQUJcBxPiBKFAxznuUSBtRlmcMjxih/Qd0K5t2Ij2yjPVakanhPQKUtrYI01MeYKwOs3W8Uw7K/Y374n2VHcb0983XiNiJW6I/Us3zfyvTtUi0cepriGgmhLNqOqYccl0V9TN7S9VSXJIiFO4R3FBmGnltM+21qS6dtVbT8ffdKZi1Z6Z3Azv6pY0YPfnOGdB46DsHpfdi8NS5cyMOo8d7GKf5nmCCqqooU7eAzziCc9W1YqszLr7TLVyRrONb8t6+AALN5Al</latexit>
r5
<latexit sha1_base64="62GNLJ8L9VZZiSRLaUdYTG84BQI=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZIi6rLopsuK9gG1lGQ6rUPTJEwmSimCP+BWP038A/0L74wpqEV0QpIz595zZu69fhyIRDnOa85aWFxaXsmvFtbWNza3its7zSRKJeMNFgWRbPtewgMR8oYSKuDtWHJv7Ae85Y/Odbx1y2UiovBKTWLeHXvDUAwE8xRRl7JX6RVLTtkxy54HbgZKyFY9Kr7gGn1EYEgxBkcIRTiAh4SeDlw4iInrYkqcJCRMnOMeBdKmlMUpwyN2RN8h7ToZG9JeeyZGzeiUgF5JShsHpIkoTxLWp9kmnhpnzf7mPTWe+m4T+vuZ15hYhRti/9LNMv+r07UoDHBqahBUU2wYXR3LXFLTFX1z+0tVihxi4jTuU1wSZkY567NtNImpXffWM/E3k6lZvWdZbop3fUsasPtznPOgWSm7x2X34qhUPctGncce9nFI8zxBFTXU0SDvIR7xhGerZoVWat19plq5TLOLb8t6+AAEF5Ai</latexit>
r2
<latexit sha1_base64="tz2z0KwiGBi+J5SN//EPzof1uvE=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl002VF+4BaSjKd1tA0CZOJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePwmDVDrOa86am19YXMovF1ZW19Y3iptbjTTOBON1FoexaPleysMg4nUZyJC3EsG9kR/ypj88V/HmLRdpEEdXcpzwzsgbREE/YJ4k6lJ0D7vFklN29LJngWtACWbV4uILrtFDDIYMI3BEkIRDeEjpacOFg4S4DibECUKBjnPco0DajLI4ZXjEDuk7oF3bsBHtlWeq1YxOCekVpLSxR5qY8gRhdZqt45l2Vuxv3hPtqe42pr9vvEbEStwQ+5dumvlfnapFoo9TXUNANSWaUdUx45Lprqib21+qkuSQEKdwj+KCMNPKaZ9trUl17aq3no6/6UzFqj0zuRne1S1pwO7Pcc6CxkHZPS67F0elypkZdR472MU+zfMEFVRRQ528B3jEE56tqhVZmXX3mWrljGYb35b18AEGd5Aj</latexit>
r3
<latexit sha1_base64="tz2z0KwiGBi+J5SN//EPzof1uvE=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl002VF+4BaSjKd1tA0CZOJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePwmDVDrOa86am19YXMovF1ZW19Y3iptbjTTOBON1FoexaPleysMg4nUZyJC3EsG9kR/ypj88V/HmLRdpEEdXcpzwzsgbREE/YJ4k6lJ0D7vFklN29LJngWtACWbV4uILrtFDDIYMI3BEkIRDeEjpacOFg4S4DibECUKBjnPco0DajLI4ZXjEDuk7oF3bsBHtlWeq1YxOCekVpLSxR5qY8gRhdZqt45l2Vuxv3hPtqe42pr9vvEbEStwQ+5dumvlfnapFoo9TXUNANSWaUdUx45Lprqib21+qkuSQEKdwj+KCMNPKaZ9trUl17aq3no6/6UzFqj0zuRne1S1pwO7Pcc6CxkHZPS67F0elypkZdR472MU+zfMEFVRRQ528B3jEE56tqhVZmXX3mWrljGYb35b18AEGd5Aj</latexit>
r3
<latexit sha1_base64="tz2z0KwiGBi+J5SN//EPzof1uvE=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl002VF+4BaSjKd1tA0CZOJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePwmDVDrOa86am19YXMovF1ZW19Y3iptbjTTOBON1FoexaPleysMg4nUZyJC3EsG9kR/ypj88V/HmLRdpEEdXcpzwzsgbREE/YJ4k6lJ0D7vFklN29LJngWtACWbV4uILrtFDDIYMI3BEkIRDeEjpacOFg4S4DibECUKBjnPco0DajLI4ZXjEDuk7oF3bsBHtlWeq1YxOCekVpLSxR5qY8gRhdZqt45l2Vuxv3hPtqe42pr9vvEbEStwQ+5dumvlfnapFoo9TXUNANSWaUdUx45Lprqib21+qkuSQEKdwj+KCMNPKaZ9trUl17aq3no6/6UzFqj0zuRne1S1pwO7Pcc6CxkHZPS67F0elypkZdR472MU+zfMEFVRRQ528B3jEE56tqhVZmXX3mWrljGYb35b18AEGd5Aj</latexit>
r3
<latexit sha1_base64="tz2z0KwiGBi+J5SN//EPzof1uvE=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl002VF+4BaSjKd1tA0CZOJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePwmDVDrOa86am19YXMovF1ZW19Y3iptbjTTOBON1FoexaPleysMg4nUZyJC3EsG9kR/ypj88V/HmLRdpEEdXcpzwzsgbREE/YJ4k6lJ0D7vFklN29LJngWtACWbV4uILrtFDDIYMI3BEkIRDeEjpacOFg4S4DibECUKBjnPco0DajLI4ZXjEDuk7oF3bsBHtlWeq1YxOCekVpLSxR5qY8gRhdZqt45l2Vuxv3hPtqe42pr9vvEbEStwQ+5dumvlfnapFoo9TXUNANSWaUdUx45Lprqib21+qkuSQEKdwj+KCMNPKaZ9trUl17aq3no6/6UzFqj0zuRne1S1pwO7Pcc6CxkHZPS67F0elypkZdR472MU+zfMEFVRRQ528B3jEE56tqhVZmXX3mWrljGYb35b18AEGd5Aj</latexit>
r3
<latexit sha1_base64="62GNLJ8L9VZZiSRLaUdYTG84BQI=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVZIi6rLopsuK9gG1lGQ6rUPTJEwmSimCP+BWP038A/0L74wpqEV0QpIz595zZu69fhyIRDnOa85aWFxaXsmvFtbWNza3its7zSRKJeMNFgWRbPtewgMR8oYSKuDtWHJv7Ae85Y/Odbx1y2UiovBKTWLeHXvDUAwE8xRRl7JX6RVLTtkxy54HbgZKyFY9Kr7gGn1EYEgxBkcIRTiAh4SeDlw4iInrYkqcJCRMnOMeBdKmlMUpwyN2RN8h7ToZG9JeeyZGzeiUgF5JShsHpIkoTxLWp9kmnhpnzf7mPTWe+m4T+vuZ15hYhRti/9LNMv+r07UoDHBqahBUU2wYXR3LXFLTFX1z+0tVihxi4jTuU1wSZkY567NtNImpXffWM/E3k6lZvWdZbop3fUsasPtznPOgWSm7x2X34qhUPctGncce9nFI8zxBFTXU0SDvIR7xhGerZoVWat19plq5TLOLb8t6+AAEF5Ai</latexit>
r2
<latexit sha1_base64="c+apyjzc+qyZl5y3XBN5IUQKERM=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSy66bKifUAtJZlOa2iahMlEKUXwB9zqp4l/oH/hnXEKahGdkOTMufecmXuvn4RBKh3nNWfNzS8sLuWXCyura+sbxc2tRhpngvE6i8NYtHwv5WEQ8boMZMhbieDeyA950x+eq3jzlos0iKMrOU54Z+QNoqAfME8SdSm6R91iySk7etmzwDWgBLNqcfEF1+ghBkOGETgiSMIhPKT0tOHCQUJcBxPiBKFAxznuUSBtRlmcMjxih/Qd0K5t2Ij2yjPVakanhPQKUtrYI01MeYKwOs3W8Uw7K/Y374n2VHcb0983XiNiJW6I/Us3zfyvTtUi0cepriGgmhLNqOqYccl0V9TN7S9VSXJIiFO4R3FBmGnltM+21qS6dtVbT8ffdKZi1Z6Z3Azv6pY0YPfnOGdB46DsHpfdi8NS5cyMOo8d7GKf5nmCCqqooU7eAzziCc9W1YqszLr7TLVyRrONb8t6+AALN5Al</latexit>
r5
<latexit sha1_base64="tz2z0KwiGBi+J5SN//EPzof1uvE=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl002VF+4BaSjKd1tA0CZOJUorgD7jVTxP/QP/CO+MU1CI6IcmZc+85M/dePwmDVDrOa86am19YXMovF1ZW19Y3iptbjTTOBON1FoexaPleysMg4nUZyJC3EsG9kR/ypj88V/HmLRdpEEdXcpzwzsgbREE/YJ4k6lJ0D7vFklN29LJngWtACWbV4uILrtFDDIYMI3BEkIRDeEjpacOFg4S4DibECUKBjnPco0DajLI4ZXjEDuk7oF3bsBHtlWeq1YxOCekVpLSxR5qY8gRhdZqt45l2Vuxv3hPtqe42pr9vvEbEStwQ+5dumvlfnapFoo9TXUNANSWaUdUx45Lprqib21+qkuSQEKdwj+KCMNPKaZ9trUl17aq3no6/6UzFqj0zuRne1S1pwO7Pcc6CxkHZPS67F0elypkZdR472MU+zfMEFVRRQ528B3jEE56tqhVZmXX3mWrljGYb35b18AEGd5Aj</latexit>
r3
<latexit sha1_base64="rWepnJx2EMui7noL/Eg6mzVUk0U=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl0I64qmLZQS0mm0zqYJmEyUUrpxh9wq18m/oH+hXfGFNQiOiHJmXPvOTP33iAJRaoc57Vgzc0vLC4Vl0srq2vrG+XNrUYaZ5Jxj8VhLFuBn/JQRNxTQoW8lUjuD4OQN4PbMx1v3nGZiji6UqOEd4b+IBJ9wXxFlNfvjuWkW644Vccsexa4OaggX/W4/IJr9BCDIcMQHBEU4RA+UnracOEgIa6DMXGSkDBxjglKpM0oi1OGT+wtfQe0a+dsRHvtmRo1o1NCeiUpbeyRJqY8SVifZpt4Zpw1+5v32Hjqu43oH+ReQ2IVboj9SzfN/K9O16LQx4mpQVBNiWF0dSx3yUxX9M3tL1UpckiI07hHcUmYGeW0z7bRpKZ23VvfxN9Mpmb1nuW5Gd71LWnA7s9xzoLGQdU9qrqXh5XaaT7qInawi32a5zFqOEcdHnkLPOIJz9aFlVj31ugz1Srkmm18W9bDBxsokWI=</latexit>
fr
<latexit sha1_base64="mf74j2/IW0Se52Xig7GUXusDehM=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl047IF+4BWSpJO26F5MZkopVTc+gNu9a/EP9C/8M6YglpEJyQ5c+49Z+be68Y+T6RlveaMhcWl5ZX8amFtfWNzq7i900iiVHis7kV+JFqukzCfh6wuufRZKxbMCVyfNd3RhYo3b5hIeBReyXHMrgNnEPI+9xxJVKcTOHLo9ids2j3uFktW2dLLnAd2BkrIVjUqvqCDHiJ4SBGAIYQk7MNBQk8bNizExF1jQpwgxHWcYYoCaVPKYpThEDui74B27YwNaa88E6326BSfXkFKEwekiShPEFanmTqeamfF/uY90Z7qbmP6u5lXQKzEkNi/dLPM/+pULRJ9nOkaONUUa0ZV52Uuqe6Kurn5pSpJDjFxCvcoLgh7Wjnrs6k1ia5d9dbR8TedqVi197LcFO/qljRg++c450HjqGyflO3acalyno06jz3s45DmeYoKLlFFnbxjPOIJz0bNuDXujPvPVCOXaXbxbRkPH06LlDc=</latexit>
e4
<latexit sha1_base64="FxdbzfKNUjk5MxIl/W14uaux3Dg=">AAACz3icjVHLSsNAFD3GV62vqks3wSK4KolIdVl047IF+4BWyiSdtkPzIpkopVTc+gNu9a/EP9C/8M6YglpEJyQ5c+49Z+be60SeSKRlvS4Yi0vLK6u5tfz6xubWdmFnt5GEaezyuht6YdxyWMI9EfC6FNLjrSjmzHc83nRGFyrevOFxIsLgSo4jfu2zQSD6wmWSqE7HZ3Lo9Cd82i13C0WrZOllzgM7A0VkqxoWXtBBDyFcpPDBEUAS9sCQ0NOGDQsRcdeYEBcTEjrOMUWetCllccpgxI7oO6BdO2MD2ivPRKtdOsWjNyaliUPShJQXE1anmTqeamfF/uY90Z7qbmP6O5mXT6zEkNi/dLPM/+pULRJ9nOkaBNUUaUZV52Yuqe6Kurn5pSpJDhFxCvcoHhN2tXLWZ1NrEl276i3T8TedqVi1d7PcFO/qljRg++c450HjuGSXS3btpFg5z0adwz4OcETzPEUFl6iiTt4RHvGEZ6Nm3Bp3xv1nqrGQafbwbRkPH1NLlDk=</latexit>
e6
<latexit sha1_base64="UlOOTzREx9USg+FzvORCScG+re0=">AAACz3icjVHLSsNAFD3GV62vqks3wSK4KomIuiy6cdmCfUBbSpJO26F5MZkopVTc+gNu9a/EP9C/8M6YglpEJyQ5c+49Z+be68Y+T6RlvS4Yi0vLK6u5tfz6xubWdmFnt55EqfBYzYv8SDRdJ2E+D1lNcumzZiyYE7g+a7ijSxVv3DCR8Ci8luOYdQJnEPI+9xxJVLsdOHLo9idi2rW7haJVsvQy54GdgSKyVYkKL2ijhwgeUgRgCCEJ+3CQ0NOCDQsxcR1MiBOEuI4zTJEnbUpZjDIcYkf0HdCulbEh7ZVnotUeneLTK0hp4pA0EeUJwuo0U8dT7azY37wn2lPdbUx/N/MKiJUYEvuXbpb5X52qRaKPc10Dp5pizajqvMwl1V1RNze/VCXJISZO4R7FBWFPK2d9NrUm0bWr3jo6/qYzFav2Xpab4l3dkgZs/xznPKgfl+zTkl09KZYvslHnsI8DHNE8z1DGFSqokXeMRzzh2agat8adcf+Zaixkmj18W8bDB2ZylEE=</latexit>
r1
<latexit sha1_base64="zTsGjeRSoPv6ZNDWSLqiKpgujZo=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl047IF+wBbJJlO26F5kUyUUipu/QG3+lfiH+hfeGdMQS2iE5KcOfeeM3PvdSNPJNKyXnPG3PzC4lJ+ubCyura+UdzcaiRhGjNeZ6EXxi3XSbgnAl6XQnq8FcXc8V2PN93huYo3b3iciDC4lKOId3ynH4ieYI4kqt32HTlwe2M+uT68LpassqWXOQvsDJSQrWpYfEEbXYRgSOGDI4Ak7MFBQs8VbFiIiOtgTFxMSOg4xwQF0qaUxSnDIXZI3z7trjI2oL3yTLSa0SkevTEpTeyRJqS8mLA6zdTxVDsr9jfvsfZUdxvR3828fGIlBsT+pZtm/lenapHo4VTXIKimSDOqOpa5pLor6ubml6okOUTEKdyleEyYaeW0z6bWJLp21VtHx990pmLVnmW5Kd7VLWnA9s9xzoLGQdk+Ltu1o1LlLBt1HjvYxT7N8wQVXKCKOnlHeMQTno2acWvcGfefqUYu02zj2zIePgBMK5Q2</latexit>
e3
<latexit sha1_base64="hKK2+ehg6tAiIQL7L+DRLZVOaqc=">AAACz3icjVHLSsNAFD3GV62vqks3wSK4KomIuiy6cdmCfUBbSpJO26F5MZkopVTc+gNu9a/EP9C/8M6YglpEJyQ5c+49Z+be68Y+T6RlvS4Yi0vLK6u5tfz6xubWdmFnt55EqfBYzYv8SDRdJ2E+D1lNcumzZiyYE7g+a7ijSxVv3DCR8Ci8luOYdQJnEPI+9xxJVLsdOHLo9ids2rW7haJVsvQy54GdgSKyVYkKL2ijhwgeUgRgCCEJ+3CQ0NOCDQsxcR1MiBOEuI4zTJEnbUpZjDIcYkf0HdCulbEh7ZVnotUeneLTK0hp4pA0EeUJwuo0U8dT7azY37wn2lPdbUx/N/MKiJUYEvuXbpb5X52qRaKPc10Dp5pizajqvMwl1V1RNze/VCXJISZO4R7FBWFPK2d9NrUm0bWr3jo6/qYzFav2Xpab4l3dkgZs/xznPKgfl+zTkl09KZYvslHnsI8DHNE8z1DGFSqokXeMRzzh2agat8adcf+Zaixkmj18W8bDB0drlDQ=</latexit>
e1
<latexit sha1_base64="mf74j2/IW0Se52Xig7GUXusDehM=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl047IF+4BWSpJO26F5MZkopVTc+gNu9a/EP9C/8M6YglpEJyQ5c+49Z+be68Y+T6RlveaMhcWl5ZX8amFtfWNzq7i900iiVHis7kV+JFqukzCfh6wuufRZKxbMCVyfNd3RhYo3b5hIeBReyXHMrgNnEPI+9xxJVKcTOHLo9ids2j3uFktW2dLLnAd2BkrIVjUqvqCDHiJ4SBGAIYQk7MNBQk8bNizExF1jQpwgxHWcYYoCaVPKYpThEDui74B27YwNaa88E6326BSfXkFKEwekiShPEFanmTqeamfF/uY90Z7qbmP6u5lXQKzEkNi/dLPM/+pULRJ9nOkaONUUa0ZV52Uuqe6Kurn5pSpJDjFxCvcoLgh7Wjnrs6k1ia5d9dbR8TedqVi197LcFO/qljRg++c450HjqGyflO3acalyno06jz3s45DmeYoKLlFFnbxjPOIJz0bNuDXujPvPVCOXaXbxbRkPH06LlDc=</latexit>
e4
<latexit sha1_base64="y1IXLFfurJ3mpNKa26zcVeOnNQg=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRKR6rLopsuK9gG1lGQ6rUPTJEwmSimCP+BWP038A/0L74wpqEV0QpIz595zZu69fhyIRDnOa85aWFxaXsmvFtbWNza3its7zSRKJeMNFgWRbPtewgMR8oYSKuDtWHJv7Ae85Y/Odbx1y2UiovBKTWLeHXvDUAwE8xRRl7JX6RVLTtkxy54HbgZKyFY9Kr7gGn1EYEgxBkcIRTiAh4SeDlw4iInrYkqcJCRMnOMeBdKmlMUpwyN2RN8h7ToZG9JeeyZGzeiUgF5JShsHpIkoTxLWp9kmnhpnzf7mPTWe+m4T+vuZ15hYhRti/9LNMv+r07UoDHBqahBUU2wYXR3LXFLTFX1z+0tVihxi4jTuU1wSZkY567NtNImpXffWM/E3k6lZvWdZbop3fUsasPtznPOgeVR2K2X34rhUPctGncce9nFI8zxBFTXU0SDvIR7xhGerZoVWat19plq5TLOLb8t6+AANl5Am</latexit>
r6
<latexit sha1_base64="Y1OrL3P4utNMXoNwPhVye+97CNE=">AAACz3icjVHLSsNAFD3GV62vqks3wSK4KolIdVl047IF+4BWSpJO29C8mEyUUipu/QG3+lfiH+hfeGecglpEJyQ5c+49Z+be6yaBnwrLel0wFpeWV1Zza/n1jc2t7cLObiONM+6xuhcHMW+5TsoCP2J14YuAtRLOnNANWNMdXch484bx1I+jKzFO2HXoDCK/73uOIKrTCR0xdPsTPu2Wu4WiVbLUMueBrUERelXjwgs66CGGhwwhGCIIwgEcpPS0YcNCQtw1JsRxQr6KM0yRJ21GWYwyHGJH9B3Qrq3ZiPbSM1Vqj04J6OWkNHFImpjyOGF5mqnimXKW7G/eE+Up7zamv6u9QmIFhsT+pZtl/lcnaxHo40zV4FNNiWJkdZ52yVRX5M3NL1UJckiIk7hHcU7YU8pZn02lSVXtsreOir+pTMnKvadzM7zLW9KA7Z/jnAeN45JdLtm1k2LlXI86h30c4IjmeYoKLlFFnbwTPOIJz0bNuDXujPvPVGNBa/bwbRkPH3JSlEY=</latexit>
r6
<latexit sha1_base64="y1IXLFfurJ3mpNKa26zcVeOnNQg=">AAACxnicjVHLSsNAFD2Nr1pfVZdugkVwVRKR6rLopsuK9gG1lGQ6rUPTJEwmSimCP+BWP038A/0L74wpqEV0QpIz595zZu69fhyIRDnOa85aWFxaXsmvFtbWNza3its7zSRKJeMNFgWRbPtewgMR8oYSKuDtWHJv7Ae85Y/Odbx1y2UiovBKTWLeHXvDUAwE8xRRl7JX6RVLTtkxy54HbgZKyFY9Kr7gGn1EYEgxBkcIRTiAh4SeDlw4iInrYkqcJCRMnOMeBdKmlMUpwyN2RN8h7ToZG9JeeyZGzeiUgF5JShsHpIkoTxLWp9kmnhpnzf7mPTWe+m4T+vuZ15hYhRti/9LNMv+r07UoDHBqahBUU2wYXR3LXFLTFX1z+0tVihxi4jTuU1wSZkY567NtNImpXffWM/E3k6lZvWdZbop3fUsasPtznPOgeVR2K2X34rhUPctGncce9nFI8zxBFTXU0SDvIR7xhGerZoVWat19plq5TLOLb8t6+AANl5Am</latexit>
r6
<latexit sha1_base64="hKK2+ehg6tAiIQL7L+DRLZVOaqc=">AAACz3icjVHLSsNAFD3GV62vqks3wSK4KomIuiy6cdmCfUBbSpJO26F5MZkopVTc+gNu9a/EP9C/8M6YglpEJyQ5c+49Z+be68Y+T6RlvS4Yi0vLK6u5tfz6xubWdmFnt55EqfBYzYv8SDRdJ2E+D1lNcumzZiyYE7g+a7ijSxVv3DCR8Ci8luOYdQJnEPI+9xxJVLsdOHLo9ids2rW7haJVsvQy54GdgSKyVYkKL2ijhwgeUgRgCCEJ+3CQ0NOCDQsxcR1MiBOEuI4zTJEnbUpZjDIcYkf0HdCulbEh7ZVnotUeneLTK0hp4pA0EeUJwuo0U8dT7azY37wn2lPdbUx/N/MKiJUYEvuXbpb5X52qRaKPc10Dp5pizajqvMwl1V1RNze/VCXJISZO4R7FBWFPK2d9NrUm0bWr3jo6/qYzFav2Xpab4l3dkgZs/xznPKgfl+zTkl09KZYvslHnsI8DHNE8z1DGFSqokXeMRzzh2agat8adcf+Zaixkmj18W8bDB0drlDQ=</latexit>
e1
<latexit sha1_base64="zTsGjeRSoPv6ZNDWSLqiKpgujZo=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl047IF+wBbJJlO26F5kUyUUipu/QG3+lfiH+hfeGdMQS2iE5KcOfeeM3PvdSNPJNKyXnPG3PzC4lJ+ubCyura+UdzcaiRhGjNeZ6EXxi3XSbgnAl6XQnq8FcXc8V2PN93huYo3b3iciDC4lKOId3ynH4ieYI4kqt32HTlwe2M+uT68LpassqWXOQvsDJSQrWpYfEEbXYRgSOGDI4Ak7MFBQs8VbFiIiOtgTFxMSOg4xwQF0qaUxSnDIXZI3z7trjI2oL3yTLSa0SkevTEpTeyRJqS8mLA6zdTxVDsr9jfvsfZUdxvR3828fGIlBsT+pZtm/lenapHo4VTXIKimSDOqOpa5pLor6ubml6okOUTEKdyleEyYaeW0z6bWJLp21VtHx990pmLVnmW5Kd7VLWnA9s9xzoLGQdk+Ltu1o1LlLBt1HjvYxT7N8wQVXKCKOnlHeMQTno2acWvcGfefqUYu02zj2zIePgBMK5Q2</latexit>
e3
<latexit sha1_base64="3BS0vNbRhY+kBDmoJNnphBOyPFk=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl047IF+4BWSjKdtqF5kUyUUipu/QG3+lfiH+hfeGecglpEJyQ5c+49Z+be68a+lwrLes0ZC4tLyyv51cLa+sbmVnF7p5FGWcJ4nUV+lLRcJ+W+F/K68ITPW3HCncD1edMdXch484YnqReFV2Ic8+vAGYRe32OOIKrTCRwxdPsTPu0edYslq2ypZc4DW4MS9KpGxRd00EMEhgwBOEIIwj4cpPS0YcNCTNw1JsQlhDwV55iiQNqMsjhlOMSO6DugXVuzIe2lZ6rUjE7x6U1IaeKANBHlJYTlaaaKZ8pZsr95T5SnvNuY/q72CogVGBL7l26W+V+drEWgjzNVg0c1xYqR1THtkqmuyJubX6oS5BATJ3GP4glhppSzPptKk6raZW8dFX9TmZKVe6ZzM7zLW9KA7Z/jnAeNo7J9UrZrx6XKuR51HnvYxyHN8xQVXKKKOnnHeMQTno2acWvcGfefqUZOa3bxbRkPH0nLlDU=</latexit>
e2
<latexit sha1_base64="HgDj9YZNIBSZuISo1y+q84EI7KE=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl047IF+wBbJJlO29C8mEyUUipu/QG3+lfiH+hfeGdMQS2iE5KcOfeeM3PvdWPfS6RlveaMufmFxaX8cmFldW19o7i51UiiVDBeZ5EfiZbrJNz3Ql6XnvR5KxbcCVyfN93huYo3b7hIvCi8lKOYdwKnH3o9jzmSqHY7cOTA7Y3F5PrwuliyypZe5iywM1BCtqpR8QVtdBGBIUUAjhCSsA8HCT1XsGEhJq6DMXGCkKfjHBMUSJtSFqcMh9ghffu0u8rYkPbKM9FqRqf49ApSmtgjTUR5grA6zdTxVDsr9jfvsfZUdxvR3828AmIlBsT+pZtm/lenapHo4VTX4FFNsWZUdSxzSXVX1M3NL1VJcoiJU7hLcUGYaeW0z6bWJLp21VtHx990pmLVnmW5Kd7VLWnA9s9xzoLGQdk+Ltu1o1LlLBt1HjvYxT7N8wQVXKCKOnnHeMQTno2acWvcGfefqUYu02zj2zIePgBrMpRD</latexit>
r3
<latexit sha1_base64="HgDj9YZNIBSZuISo1y+q84EI7KE=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl047IF+wBbJJlO29C8mEyUUipu/QG3+lfiH+hfeGdMQS2iE5KcOfeeM3PvdWPfS6RlveaMufmFxaX8cmFldW19o7i51UiiVDBeZ5EfiZbrJNz3Ql6XnvR5KxbcCVyfN93huYo3b7hIvCi8lKOYdwKnH3o9jzmSqHY7cOTA7Y3F5PrwuliyypZe5iywM1BCtqpR8QVtdBGBIUUAjhCSsA8HCT1XsGEhJq6DMXGCkKfjHBMUSJtSFqcMh9ghffu0u8rYkPbKM9FqRqf49ApSmtgjTUR5grA6zdTxVDsr9jfvsfZUdxvR3828AmIlBsT+pZtm/lenapHo4VTX4FFNsWZUdSxzSXVX1M3NL1VJcoiJU7hLcUGYaeW0z6bWJLp21VtHx990pmLVnmW5Kd7VLWnA9s9xzoLGQdk+Ltu1o1LlLBt1HjvYxT7N8wQVXKCKOnnHeMQTno2acWvcGfefqUYu02zj2zIePgBrMpRD</latexit>
r3
<latexit sha1_base64="HgDj9YZNIBSZuISo1y+q84EI7KE=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIVdVl047IF+wBbJJlO29C8mEyUUipu/QG3+lfiH+hfeGdMQS2iE5KcOfeeM3PvdWPfS6RlveaMufmFxaX8cmFldW19o7i51UiiVDBeZ5EfiZbrJNz3Ql6XnvR5KxbcCVyfN93huYo3b7hIvCi8lKOYdwKnH3o9jzmSqHY7cOTA7Y3F5PrwuliyypZe5iywM1BCtqpR8QVtdBGBIUUAjhCSsA8HCT1XsGEhJq6DMXGCkKfjHBMUSJtSFqcMh9ghffu0u8rYkPbKM9FqRqf49ApSmtgjTUR5grA6zdTxVDsr9jfvsfZUdxvR3828AmIlBsT+pZtm/lenapHo4VTX4FFNsWZUdSxzSXVX1M3NL1VJcoiJU7hLcUGYaeW0z6bWJLp21VtHx990pmLVnmW5Kd7VLWnA9s9xzoLGQdk+Ltu1o1LlLBt1HjvYxT7N8wQVXKCKOnnHeMQTno2acWvcGfefqUYu02zj2zIePgBrMpRD</latexit>
r3
<latexit sha1_base64="3BS0vNbRhY+kBDmoJNnphBOyPFk=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl047IF+4BWSjKdtqF5kUyUUipu/QG3+lfiH+hfeGecglpEJyQ5c+49Z+be68a+lwrLes0ZC4tLyyv51cLa+sbmVnF7p5FGWcJ4nUV+lLRcJ+W+F/K68ITPW3HCncD1edMdXch484YnqReFV2Ic8+vAGYRe32OOIKrTCRwxdPsTPu0edYslq2ypZc4DW4MS9KpGxRd00EMEhgwBOEIIwj4cpPS0YcNCTNw1JsQlhDwV55iiQNqMsjhlOMSO6DugXVuzIe2lZ6rUjE7x6U1IaeKANBHlJYTlaaaKZ8pZsr95T5SnvNuY/q72CogVGBL7l26W+V+drEWgjzNVg0c1xYqR1THtkqmuyJubX6oS5BATJ3GP4glhppSzPptKk6raZW8dFX9TmZKVe6ZzM7zLW9KA7Z/jnAeNo7J9UrZrx6XKuR51HnvYxyHN8xQVXKKKOnnHeMQTno2acWvcGfefqUZOa3bxbRkPH0nLlDU=</latexit>
e2
<latexit sha1_base64="3BS0vNbRhY+kBDmoJNnphBOyPFk=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVl047IF+4BWSjKdtqF5kUyUUipu/QG3+lfiH+hfeGecglpEJyQ5c+49Z+be68a+lwrLes0ZC4tLyyv51cLa+sbmVnF7p5FGWcJ4nUV+lLRcJ+W+F/K68ITPW3HCncD1edMdXch484YnqReFV2Ic8+vAGYRe32OOIKrTCRwxdPsTPu0edYslq2ypZc4DW4MS9KpGxRd00EMEhgwBOEIIwj4cpPS0YcNCTNw1JsQlhDwV55iiQNqMsjhlOMSO6DugXVuzIe2lZ6rUjE7x6U1IaeKANBHlJYTlaaaKZ8pZsr95T5SnvNuY/q72CogVGBL7l26W+V+drEWgjzNVg0c1xYqR1THtkqmuyJubX6oS5BATJ3GP4glhppSzPptKk6raZW8dFX9TmZKVe6ZzM7zLW9KA7Z/jnAeNo7J9UrZrx6XKuR51HnvYxyHN8xQVXKKKOnnHeMQTno2acWvcGfefqUZOa3bxbRkPH0nLlDU=</latexit>
e2
PLM Encoding Transmitting Score Modeling Knowledge-based Propagation Attentive Pooling
Figure 2: Overview of ConstGCN. Given the representations of entities, ConstGCN first computes the transmitting
scores between entities in all relation spaces and then performs the graph convolution that updates each entity
by transmitting its neighboring information along with projection spaces of all relations under the constraints of
transmitting scores. Finally, the entity representations that model the structural semantics of heterogeneous graphs
are learned and further used to predict the relational classes.
Methods Scoring Function
TransE dr(ei, rk, ej) = γ− ||ei+ejrk||
RotatE dr(ei, rk, ej) = γ||heiejrki||
DistMult
dr(ei, rk, ej) = hei,ej,rki
ComplEx
dr(ei, rk, ej) = Re(hei,ej,rki)
Table 1: The scoring functions for typical KGE models.
The L1-norm is used for all distance based models and
the subscript || · ||1is dropped for brevity.
representation of head entity in relation-specific
projection spaces to approximate tail entity. We
thus define a unified transmitting operation
for
the existing typical KGE approaches,
er=
e+r,(TransE)
he,ri,(DistMult)
Re(he,ri),(ComplEx)
(1)
where
h·i
denotes the generalized dot product, and
Re
is the operation that returns the real part of a
complex value. The transmitting operation above
will be used to perform knowledge-based message
passing in document.
3 Methodology
In this section, we introduce the details of the pro-
posed model. The overall framework is illustrated
in figure 2. Based on the representations of enti-
ties obtained from a PLM encoder, ConstGCN is
composed of
T
graph convolutional layers and each
layer has two computational steps: the computation
of transmitting scores and the computation of mes-
sage passing under the constraints of transmitting
scores.
3.1 PLM Encoding
Given an input document consisting of a sequence
of words with a set of typed entities, we first insert a
special token "*" at the start and end of entity men-
tions based on the entity marker tecnique (Zhang
et al.,2017;Shi and Lin,2019;Baldini Soares et al.,
2019). For the processed document
D={xi}|D|
i=1
,
we then employ a pre-trained language model (e.g.
BERT (Devlin et al.,2019)) to get contextual se-
quence representations:
H= (x1, ..., x|D|) = PLM(x1, ..., x|D|),(2)
where
xiRdw
refer to the contextualized em-
bedding of
i
-th token. For those documents that
the sequence length are longer than the maximum
input length of encoder, we compute the represen-
tations of overlapping tokens by averaging their
embeddings from different windows. Then, we uti-
lize the embedding of special token "*" at the start
of
u
-th mention to represent the mention
mu
. For
i
-th entity with its mentions
ei={mu}|ei|
u=1
, we
compute an initial coarse-grained entity representa-
tion by averaging its coreference mentions with the
logsumexp pooling function (Zhang et al.,2019):
ei= log X
muei
exp(mu),(3)
摘要:

ConstGCN:ConstrainedTransmission-basedGraphConvolutionalNetworksforDocument-levelRelationExtractionJiQi1,BinXu1,KaishengZeng1,JinxinLiu1,JifanYu1,QiGao2,JuanziLi1,LeiHou11DepartmentofComputerScienceandTechnology,TsinghuaUniversity2BeijingKedongElectricControlSystemCo.Ltd.qj20@mails.tsinghua.edu.cn,x...

展开>> 收起<<
ConstGCN Constrained Transmission-based Graph Convolutional Networks for Document-level Relation Extraction Ji Qi1 Bin Xu1 Kaisheng Zeng1 Jinxin Liu1.pdf

共12页,预览3页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:12 页 大小:2.48MB 格式:PDF 时间:2025-04-27

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 12
客服
关注