FAST AUTOMATIC BAYESIAN CUBATURE USING MATCHING KERNELS AND DESIGNS BY

2025-04-27 0 0 2.56MB 111 页 10玖币
侵权投诉
FAST AUTOMATIC BAYESIAN CUBATURE USING MATCHING KERNELS
AND DESIGNS
BY
JAGADEESWARAN RATHINAVEL
Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Applied Mathematics
in the Graduate College of the
Illinois Institute of Technology
Approved
Advisor
Chicago, Illinois
December 2019
arXiv:2210.03253v1 [math.NA] 6 Oct 2022
ACKNOWLEDGMENT
I want to thank my advisor Prof. Fred J Hickernell for his support and guid-
ance in my completion of this thesis and throughout my studies here at IIT. His
support and motivation have given me the confidence to endure through the research.
I would like to also thank the GAIL project collaborators with whom I have
worked to add my new algorithms to the GAIL MATLAB toolbox: Prof. Sou-Cheng
Choi, Yuhan Ding, Lan Jiang, Xin Tong, and Kan Zhang. Especially, Prof. Sou-
Cheng Choi’s support and guidance as the project leader helped me to focus on my
cubature algorithms.
My special gratitude also goes to my thesis committee members, Prof. Jinqiao
Duan, Prof. Fred J Hickernell, Prof. Shuwang Li, and Prof. Geoffrey Williamson.
Above all, I want to thank them because they were flexible and willing to dedicate
time to review my work and attend my comprehensive and defense examinations.
I would like to thank Prof. Dirk Nuyens for suggestions, valuable tips and
notes when we were researching higher order nets and kernels.
I would like to thank the organizers of the SAMSI-Lloyds-Turing Workshop
on Probabilistic Numerical Methods, where a part of preliminary version of this work
was discussed. I also thank Prof. Chris Oates and Prof. Sou-Cheng Choi for valuable
comments.
I would like to specifically thank my friend Samuel Davidson for reviewing and
suggesting the improvements on the text.
Last but not least, I would not be able to make it without the support of my
family. I would like to thank my wife for her continuous support and sacrifice. I also
would like to thank my parents for their endless support.
iii
TABLE OF CONTENTS
Page
ACKNOWLEDGEMENT......................... iii
LISTOFTABLES ............................ vi
LISTOFFIGURES............................ viii
ABSTRACT ............................... ix
CHAPTER
1.INTRODUCTION....................... 1
1.1.Cubature......................... 1
1.2. Stopping Criterion . . . . . . . . . . . . . . . . . . . . 2
1.3. Low Discrepancy Points . . . . . . . . . . . . . . . . . . 3
1.4.PriorWork........................ 3
2. BAYESIAN CUBATURE . . . . . . . . . . . . . . . . . . . 6
2.1. Bayesian Posterior Error . . . . . . . . . . . . . . . . . 6
2.2. Hyperparameter Estimation . . . . . . . . . . . . . . . . 8
2.3. Empirical Bayes . . . . . . . . . . . . . . . . . . . . . 9
2.4.FullBayes ........................ 11
2.5. Generalized Cross-Validation . . . . . . . . . . . . . . . 16
2.6. Cone of Functions and the Credible interval . . . . . . . . 19
2.7. The Automatic Bayesian Cubature Algorithm . . . . . . . 22
2.8. Example with the Mat´ern Kernel . . . . . . . . . . . . . 24
3. FAST AUTOMATIC BAYESIAN CUBATURE . . . . . . . . . 28
3.1. Fast Bayesian Transform Kernel . . . . . . . . . . . . . . 28
3.2. Empirical Bayes . . . . . . . . . . . . . . . . . . . . . 32
3.3.FullBayes ........................ 34
3.4. Generalized Cross-Validation . . . . . . . . . . . . . . . 35
3.5. Product Kernels . . . . . . . . . . . . . . . . . . . . . 36
4. INTEGRATION LATTICES AND
SHIFT INVARIANT KERNELS . . . . . . . . . . . . . . . . 40
4.1. Extensible Integration Lattice Node Sets . . . . . . . . . 40
4.2. Shift Invariant Kernels . . . . . . . . . . . . . . . . . . 41
4.3. Continuous Valued Kernel Order . . . . . . . . . . . . . 45
4.4.Summary......................... 50
iv
4.5. Periodizing Variable Transformations . . . . . . . . . . . 51
5. SOBOL’ NETS AND WALSH KERNELS . . . . . . . . . . . 54
5.1.SobolNets........................ 54
5.2. Walsh Kernels . . . . . . . . . . . . . . . . . . . . . . 57
5.3. Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . 61
5.4. Higher Order Nets . . . . . . . . . . . . . . . . . . . . 68
6. NUMERICAL IMPLEMENTATION . . . . . . . . . . . . . . 69
6.1. Overcoming Cancellation Error . . . . . . . . . . . . . . 69
6.2. Kernel Hyperparameters Search . . . . . . . . . . . . . . 72
7. NUMERICAL RESULTS AND OBSERVATIONS . . . . . . . 75
7.1. Testing Methodology . . . . . . . . . . . . . . . . . . . 75
7.2. Multivariate Gaussian Probability . . . . . . . . . . . . . 76
7.3. Keister’s Example . . . . . . . . . . . . . . . . . . . . 78
7.4. Option Pricing . . . . . . . . . . . . . . . . . . . . . . 83
7.5.Discussion ........................ 85
7.6. Comparison with cubMC g,cubLattice g and cubSobol g . 89
7.7. Shape Parameter Fine-tuning . . . . . . . . . . . . . . . 92
8. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . 94
8.1.Conclusion........................ 94
8.2.FutureWork ....................... 95
APPENDIX ............................... 98
BIBLIOGRAPHY............................. 98
v
摘要:

FASTAUTOMATICBAYESIANCUBATUREUSINGMATCHINGKERNELSANDDESIGNSBYJAGADEESWARANRATHINAVELSubmittedinpartialful llmentoftherequirementsforthedegreeofDoctorofPhilosophyinAppliedMathematicsintheGraduateCollegeoftheIllinoisInstituteofTechnologyApprovedAdvisorChicago,IllinoisDecember2019ACKNOWLEDGMENTIwanttot...

展开>> 收起<<
FAST AUTOMATIC BAYESIAN CUBATURE USING MATCHING KERNELS AND DESIGNS BY.pdf

共111页,预览5页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:111 页 大小:2.56MB 格式:PDF 时间:2025-04-27

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 111
客服
关注