A chemomechanical model of sperm locomotion reveals two modes of swimming Chenji Li1Brato Chakrabarti2Pedro Castilla1Achal Mahajan1and David Saintillan1 1Department of Mechanical and Aerospace Engineering

2025-04-27 0 0 7.86MB 15 页 10玖币
侵权投诉
A chemomechanical model of sperm locomotion reveals two modes of swimming
Chenji Li,1Brato Chakrabarti,2Pedro Castilla,1Achal Mahajan,1and David Saintillan1,
1Department of Mechanical and Aerospace Engineering,
University of California San Diego, La Jolla, CA 92093, USA
2Center for Computational Biology, Flatiron Institute, New York, NY 10010
(Dated: October 13, 2022)
The propulsion of mammalian spermatozoa relies on the spontaneous periodic oscillation of their
flagella. These oscillations are driven internally by the coordinated action of ATP-powered dynein
motors that exert sliding forces between microtubule doublets, resulting in bending waves that
propagate along the flagellum and enable locomotion. We present an integrated chemomechanical
model of a freely swimming spermatozoon that uses a sliding-control model of the axoneme capturing
the two-way feedback between motor kinetics and elastic deformations while accounting for detailed
fluid mechanics around the moving cell. We develop a robust computational framework that solves
a boundary integral equation for the passive sperm head alongside the slender-body equation for
the deforming flagellum described as a geometrically nonlinear internally actuated Euler-Bernoulli
beam, and captures full hydrodynamic interactions. Nonlinear simulations are shown to produce
spontaneous oscillations with realistic beating patterns and trajectories, which we analyze as a
function of sperm number and motor activity. Our results indicate that the swimming velocity does
not vary monotonically with dynein activity, but instead displays two maxima corresponding to
distinct modes of swimming, each characterized by qualitatively different waveforms and trajectories.
Our model also provides an estimate for the efficiency of swimming, which peaks at low sperm
number.
I. INTRODUCTION
The world at low Reynolds number comprises of a large variety of swimming microorganisms [1]. Examples range
from spermatozoa that navigate through the female reproductive tract to fuse with the ovum, to ciliated unicellular
organisms like Paramecium commonly found in ponds, to bacteria found in guts to algae in the oceans [2]. These
microorganisms rely on various mechanisms to break the time reversibility of Stokes flow in order to propel themselves
in the suspending fluid [3]. While bacteria like Escherichia coli use the rotation of their helical flagellar bundle for
propulsion, eukaryotes like sperm cells rely on the propagation of bending waves along their flagella. Even though
the nomenclature of flagellum is used for both prokaryotes and eukaryotes, their structure and origin are distinctly
different. Eukaryotic flagella (or cilia) are thin hair-like cellular projections with an internal core known as the
axoneme that has been preserved during the course of evolution [4]. The axoneme has a circular cross-section and is
roughly 200 nm in diameter with 9 pairs of microtubule doublets arranged uniformly along its periphery. The doublets
are connected with each other through a spring-like protein structure called nexin that extends along the entire length
of the axoneme. Thousands of dynein molecular motors act between the microtubule doublets and generate internal
sliding or shear forces in the presence of ATP. Due to structural constraints, the sliding forces are converted to internal
bending moments that deform the flagellar backbone [5,6]. Through a highly coordinated binding and unbinding, the
molecular motors conspire to produce bending waves along the flagellum that help in the propulsion of spermatozoa
[7]. There have been several modeling efforts with varying levels of detail and complexity aimed at elucidating the
biophysical processes that give rise to these spontaneous oscillations in isolated, and fixed filaments [5,820]. While
the basic mechanisms giving rise to spontaneous deformations are now well known, the detailed relationship between
internal dynein actuation, elastohydrodynamics of the flagellum, non-local hydrodynamic interactions, and emergent
waveforms and motility characteristics remains poorly understood. In this work, we present a biophysical model of
sperm locomotion that integrates details of internal elasticity and hydrodynamic interactions with a chemomechanical
feedback loop for dynein activity within an idealized geometry. The model is applied to elucidate the relationship
between internal actuation and the resulting beating patterns, and demonstrates the key role of dynein activity in
controlling the gait and overall motility of the spermatozoon.
The hydrodynamics of swimming sperm has been widely studied, going back to the classical work of G.I. Taylor on
swimming sheets [21]. This has been followed by a series of mathematical analyses of flagellar propulsion [2225], and
hydrodynamic simulations [2629]. Recent hydrodynamic studies relevant to sperm motility have addressed the role
of surfaces in sperm accumulation [30,31], viscoelasticity of the medium [32,33], and geometry of the head [34,35].
dstn@ucsd.edu
arXiv:2210.06343v1 [physics.flu-dyn] 12 Oct 2022
2
Almost all [36] of such mathematical models coarse-grain the internal mechanics of the axoneme by prescribing the
kinematics of the flagellum.
However, it is known that a variety of chemical cues related to calcium (Ca2+) signaling along the axoneme
regulate the flagellar beating. Such signaling pathways are responsible for motility [37], hyperactivation [38], and the
reversal of wave-propagation direction along the flagellum [39]. As a first step towards understanding such biophysical
phenomena, one needs to construct a model that incorporates the necessary chemomechanical feedback loops giving
rise to sustained flagellar beating, coupled to all the relevant hydrodynamic interactions.
We address this in this paper by building on our previous work on active filaments used to model spontaneous
oscillations of isolated and fixed cilia and flagella [7]. The proposed biophysical model of a swimming spermatozoon
includes the following: (a) a simplified model for flagellar beating that accounts for an idealized axonemal structure,
internal elasticity, and dynein activity and kinetics, and (b) detailed non-local hydrodynamic interactions between
the head and the flagellum. The paper is organized as follows. First, in Sec. II we provide a brief description of
the active filament model, the necessary boundary conditions, and outline the numerical method. We then discuss a
linear stability analysis in Sec. III followed by the analysis of various beating patterns and their properties far from
equilibrium. By characterizing the swimming trajectories and emergent waveforms, we reveal how internal activity
affects the motility and gives rise to two distinct modes of swimming. Using an energy budget, we then highlight the
efficiency of the model spermatozoon. We finally discuss the features of both instantaneous and time-averaged flow
fields. We summarize and conclude in Sec. IV.
II. SPERMATOZOON MODEL
A. Equations of motion
A mature human sperm head is 5 6µm long and 3 µm wide [40]. We choose to model it as a rigid spheroid. The
flagellum of a human sperm cell has length L30 50 µm and cross-sectional diameter a200 nm. We model this
using an active filament model [7] that incorporates the necessary structural details of the axoneme, and accounts
for various biophysical active processes that drive spontaneous oscillations. The active filament model approximates
the 3D axoneme by its 2D projection. As a result, the beating of the flagellum in our model is entirely planar. As
depicted in Fig. 1, the spheroidal head is clamped to the flagellum and is immersed in a 3D infinite fluid bath.
We parametrize the centerline of the active filament by its arc-length s[0, L] and identify any point on it by the
Lagrangian marker xf(s, t) in a fixed reference frame. For an inextensible filament, we then have
xf(s, t) = xf(0, t) + Zs
0
ˆ
t(s0, t) ds0,(1)
where ˆ
t= cos φˆ
ex+ sin φˆ
eyis the tangent to the centerline and φ(s, t) is the tangent angle as depicted in Fig. 1.
We also define the associated unit normal along the centerline ˆ
n=sin φˆ
ex+ cos φˆ
ey. The velocity at any point
along the filament is then given by
v(s, t)˙
xf(s, t) = v(0, t) + Zs
0
˙
φ(s0, t)ˆ
n(s0, t) ds0.(2)
Force and torque balance for a planar elastic rod in the overdamped limit yields [7]
fvis +sF= 0,(3)
sM+N= 0,(4)
where fvis is the viscous force per unit length exerted by the fluid on the filament, F=Tˆ
t+Nˆ
nis the contact
force, and M=Mˆ
ezis the contact moment [41] in the active filament. Since the flagellum is a slender filament
(=a/L 1), we model its hydrodynamics using non-local slender body theory (SBT) [42,43], which relates viscous
forces to the centerline velocity as
8πν (v− H[fh]) = −M[fvis]≡ M[ff].(5)
Here, νis the fluid viscosity. The term H[fh], where fhis the hydrodynamic traction on the sperm head, denotes the
disturbance velocity due to the motion of the head and is obtained as a single-layer boundary integral equation [44]:
H[fh](s) = ZZDh
G(xf(s),xh)·fh(xh) dS(xh),(6)
3
s
<latexit sha1_base64="JIU2ySf98MXK7j06xPmVyMNb6xo=">AAAFsnicbZTfb9MwEMe9scIovzZ45CViQuKpasckeABpWtG0h0n7IdZVNNXkOJct7OyktlMaWfkLeIUn/jL+G+y1MGrPUpTTfT93zvkuTkrMle52f6+s3ltr3X+w/rD96PGTp882Np8PVFFJBmeswEIOE6oAcwFnOtcIw1IC5QnCeXLdd/r5FKTKC/FZ1yWMOb0UeZYzqq3rRF1sbHU73ZsVhUZvYWyRxTq+2Fz7FacFqzgIzZAqNep1Sz02VOqcITTtuFJQUnZNL2FkTUE5qLG5+dImem09aZQV0j5CRzfe/yMM5UrVPLEkp/pK+Zpz3qWNKp29H5tclJUGweYbZRVGuohc2VG7HQv4xgrOqUhNnGRZY+yrwNRtV2CUNY2HCI8QAVF5RBUQU4+YBsTAIwYBMfOIWUAMPWIYEBOPmARE6RGlT/DUEe7kJTdpEyTo/5WTLOoH6r6Xft8njk6beTijaI6CeKfehpvTADhcBg4DQC4D0gfwqwUQE2knCrQnSidKebeoXZtjnWMKrsjMddlDwAJQqhwL4SkpoG1w/AlQU9vaQKz/ibVfkZuMOKHShBOR1Aup9iV2dXvO0cGSGPMaJiZW2hYpARcY0tL6OEWM7cHNXKGiNinYH6ZpzEc/v3SlaphpOyWn4KslohuEkkqbDzD47r3lMTF74ZwJmiD1sHjubBp7nfX8yys0Btud3tvO9snO1u6HxcW2Tl6SV+QN6ZF3ZJcckGNyRhgB8p38ID9bO60vLdpic3R1ZRHzgiytFv4BpiUVGw==</latexit>
s=L
<latexit sha1_base64="ettrFPXOmb7gt/ki6kpbJQZu7fM=">AAAFtXicbZTfb9MwEMe9scIovzZ45CViQuJpasek8cCkaUXTHiptVKyrtFST41zWsLOT2c5oZOVf4BUk/jL+G+y2MGrPUpTTfT93zvkuTkrMle50fq+sPlhrPXy0/rj95Omz5y82Nl8OVVFJBmeswEKOEqoAcwFnOtcIo1IC5QnCeXLdc/r5LUiVF+KLrksYc3ol8ixnVDuX2u9Hlxtbne3ObEWh0V0YW2SxTi83137FacEqDkIzpEpddDulHhsqdc4QmnZcKSgpu6ZXcGFNQTmosZl9bBO9tZ40ygppH6Gjmff/CEO5UjVPLMmpnihfc877tItKZx/GJhdlpUGw+UZZhZEuIld51G7HAr6xgnMqUhMnWdYY+yowddsVGGVN4yHCI0RAVB5RBcStR9wGxNAjhgEx9YhpQIw8YhQQNx5xExClR5Q+wVNHuJOX3KRNkKD3V06yqBeoR176I584GTTzcEbRnATxTr0LN4MA6C8D/QCQy4D0AfxqAcRE2okC7YnSiVLeL2rX5ljnmIIrMnNd9hCwAJQqx0J4SgpoGxx/AtTUtjYQ639i7VfkJiNOqDThRCT1Qqp9iU3uzjk6XhJjXsONiZW2RUrABYa0tD5OEWN7cFNXqKhNCvaHaRqz7+eXrlQNU22nZAC+WiK6QSiptPkAg+8+XB4TcxjOmaAJUg+L586msddZ17+8QmO4s919v73zeXfr4OPiYlsnr8kb8o50yR45IMfklJwRRibkO/lBfrb2WuNW2srm6OrKIuYVWVqt4g+jDhXi</latexit>
ˆ
t
<latexit sha1_base64="iIwk4jIpD3f2kcybhIFj0NPuPDM=">AAAFw3icbZTfb9MwEMe9scIovzp45CViQuJpagcSPIA0rTDtYdJGxbpKczU5yWUNOzuZ7ZRGVv4SeIX/if8Guy2M2rMU5XTfz11854vjEnOlu93fa+t3Nlp3723ebz94+Ojxk87W06EqKpnAaVJgIUcxU4C5gFOda4RRKYHxGOEsvuo7/WwKUuWF+KLrEsacXYo8yxOmreui06ETpg3lTE/izOimuehsd3e68xWFRm9pbJPlOrnY2vhO0yKpOAidIFPqvNct9dgwqfMEoWnTSkHJkit2CefWFIyDGpv51pvopfWkUVZI+wgdzb3/RxjGlap5bEm3R+Vrznmbdl7p7N3Y5KKsNIhk8aGswkgXketD1G5TAd+SgnMmUkPjLGuMfRWYus8VGGVN4yHCI0RAVB5RBcTUI6YBMfSIYUDMPGIWECOPGAXEtUdcB0TpEaVP8NQRrvOSm7QJEvT/ynEW9QP1wEt/4BPHg2YRnjA0x0G8U2/CzSAAjlaBowCQq4D0AfxqAcRY2okC7YnSiVLeLmp3zFTnmIIrMnOn7CFgAShVjoXwlBTQHjD9CKiZPdpArP+JtV+RmwwaM2nCiYjrpVT7UjK56XN0uCJSXsO1oUrbIiXgEkNWWh9niNQ2buYKFbVJwf4wTWM++PmlK1XDTNspGYCvlohuEEombT7AYN/7q2Ni9sM5EyxG5mF04ZxfZz3/8gqN4e5O7/XO7uc323vvlxfbJnlOXpBXpEfekj1ySE7IKUnIlPwgP8mv1qfWVUu29AJdX1vGPCMrq9X8AdCRHDo=</latexit>
ˆ
n
<latexit sha1_base64="RIdSIHTqd3HV9Jm+yENqrPc1wc4=">AAAFw3icbZTfb9MwEMe9scIovzp45CViQuJpagcSPIA0rTDtYdJGxbpKczU5yWUNOzuZ7ZRGVv4SeIX/if8Guy2M2rMU5XTfz11854vjEnOlu93fa+t3Nlp3723ebz94+Ojxk87W06EqKpnAaVJgIUcxU4C5gFOda4RRKYHxGOEsvuo7/WwKUuWF+KLrEsacXYo8yxOmreui06ETpg3lTE/izIimuehsd3e68xWFRm9pbJPlOrnY2vhO0yKpOAidIFPqvNct9dgwqfMEoWnTSkHJkit2CefWFIyDGpv51pvopfWkUVZI+wgdzb3/RxjGlap5bEm3R+Vrznmbdl7p7N3Y5KKsNIhk8aGswkgXketD1G5TAd+SgnMmUkPjLGuMfRWYus8VGGVN4yHCI0RAVB5RBcTUI6YBMfSIYUDMPGIWECOPGAXEtUdcB0TpEaVP8NQRrvOSm7QJEvT/ynEW9QP1wEt/4BPHg2YRnjA0x0G8U2/CzSAAjlaBowCQq4D0AfxqAcRY2okC7YnSiVLeLmp3zFTnmIIrMnOn7CFgAShVjoXwlBTQHjD9CKiZPdpArP+JtV+RmwwaM2nCiYjrpVT7UjK56XN0uCJSXsO1oUrbIiXgEkNWWh9niNQ2buYKFbVJwf4wTWM++PmlK1XDTNspGYCvlohuEEombT7AYN/7q2Ni9sM5EyxG5mF04ZxfZz3/8gqN4e5O7/XO7uc323vvlxfbJnlOXpBXpEfekj1ySE7IKUnIlPwgP8mv1qfWVUu29AJdX1vGPCMrq9X8AbCxHDQ=</latexit>
<latexit sha1_base64="VxzElwHJqqu1GcuIX/rj7kReXvc=">AAAFtXicbZTfb9MwEMe9scIovzZ45CViQuKpagfSeABpWtG0h0kbE+sqNdXkJJc17Oy4tlMaWfkXeAWJv4z/BnstjNqzFOV038+dc76LE4GF0t3u77X1exut+w82H7YfPX7y9NnW9vOBKiuZwnlaYimHCVWABYdzXWiEoZBAWYJwkVz3nX4xA6mKkn/RtYAxo1e8yIuUaueKxaS43Nrpdro3KwqN3tLYIct1erm98SvOyrRiwHWKVKlRryv02FCpixShaceVAkHTa3oFI2tyykCNzc3HNtFr68mivJT24Tq68f4fYShTqmaJJRnVE+VrznmXNqp0/n5sCi4qDTxdbJRXGOkycpVH7XbM4VtaMkZ5ZuIkzxtjXyVmbrsSo7xpPIR7BA+IyiOqgJh5xCwgBh4xCIi5R8wDYugRw4CYesQ0IIRHCJ9gmSPcyUtmsiZI0P8rJ3nUD9RDL/2hT5ycNYvwlKI5CeKdehtuzgLgeBU4DgC5CkgfwK8WQEyknSjQniidKOXdonZtjnWBGbgic9dlDwELgFAFltxTMkDb4PgToKa2tYFY/xNrvyI3GXFCpQknIqmXUu1L6eT2nKOjFTFmNUxNrLQtUgIuMaTC+hhFjO3BzV2hvDYZ2B+macxHP790pWqYazslZ+CrAtENgqDS5gMMvvtgdUzMQThnnCZIPSxeOJvGXmc9//IKjcFup/e2s/v53c7+h+XFtkleklfkDemRPbJPjsgpOScpmZDv5Af52dprjVtZK1+g62vLmBdkZbXKP0/GFmM=</latexit>
(a) Schematic of the swimming sperm (b) Free body diagram
M(0)
<latexit sha1_base64="1g2PVDRvhHCfEjKqQW0PLxY5ANQ=">AAAFvnicdZTdTtswFMcNoxvrPoDtcjfR0CR2U6WUlSJtEoIJccEEQ6NUIhVykhPIOHZSx2GNrDzHLnazPdbeZjYtY7WZpSjW+f/Oic9HHOaYFtL3f8/NP1hoPHy0+Lj55Omz50vLKy/6RVaKCE6iDDMxCGkBmHI4kalEGOQCKAsRTsOrXaOfXoMo0ox/kVUOQ0YveJqkEZXaNAwYlZdhoj7Va/7b8+VVv7XV29rsbXh+a6Pb3ez2zKbd7XTeee2Wf7NWyXQdna8s/AjiLCoZcBkhLYqztp/LoaJCphFC3QzKAnIaXdELONNbThkUQ3Vz6tp7oy2xl2RCP1x6N9Z/PRRlRVGxUJPmlIWtGeN92lkpk95QpTwvJfBo8qGkRE9mnimB12wGHL5FGWOUxyoIk6RW+pVhbD6XoZfUtYVwi+AOUVpE6RDXFnHtEH2L6DvE2CLGDjGwiIFDjCxi5BC5ReQ2wWJDmMoLpuLaCbB7K4eJt+uoe1b4PZs4PK4n7hFFdej4G/XOXR07wMEscOAAYhYQNoBfNYAYCj1RIC1RGFGI+0Vp2hzIFGMwSSamyxYCGoC8SDHjlhID6gYHHwEl1a11xOqvWNkZmckIQiqUOxFhNZUqW4ou7+rs7c+IAatgpIJC6iQF4BRDmmsbo4iBLtzYJMorFYP+YepafbDjC5OqhLHUU3IMtpojmkHIqdDxAJ1z78yOidpx54zTEKmFBRNjXevr7PbO8v6/6a+32p3W+ueN1e3304ttkbwir8kaaZNNsk32yRE5IREZke/kJ/nV2G4kDdbIJuj83NTnJZlZjfEft4gaHA==</latexit>
F(0)
<latexit sha1_base64="R9eIqKsYSXrCfwZfa82K4CiXX7c=">AAAF6XicdZTdThQxFMcLsorrF+ilNxOJCSZmM4vsAokmBAzhggQksmyysyHtzJllpNMZOh3cSdOH8M6od76Jt/oCvo3tfojbYpNJmvP/ndOejynJaVII3/89N39roXb7zuLd+r37Dx4+Wlp+3CmykodwEmY0412CC6AJgxORCArdnANOCYVTcrFr9NMr4EWSsfeiyqGf4gFL4iTEQpvOltpBisU5iaUMRsF6fED60m/47Q3fb730G61Wq9ne0Jutrc31zbbaU2rVf3G2tDJlvCnjTRmv2fBHawVN1tHZ8sLXIMrCMgUmQoqLotf0c9GXmIskpKDqQVlAjsMLPICe3jKcQtGXozsp77m2RF6ccf0x4Y2s/3pInBZFlRJNmnQKWzPGm7ReKeLNvkxYXgpg4figuKSeyDxTLa9eDxh8DLM0xSySAYljpStFMhqZ4zLqxUpZCLMI5hClRZQOcWURVw7RsYiOQwwtYugQXYvoOsSlRVw6RG4RuU2kkSFM5XkqI+UE2J3KJPZ2HXXPCr9nE4fHauweYioPHX+jXrvLYwc4mAUOHIDPAtwG6AcNUEq4nigQlsiNyPnNojBtDkRCIzBJxqbLFgIagLxIaMYsJQKqGxy8BSqwbq0jVn/Fys7ITEZAMJfuRJBqIlW2FJ5f19nbnxGDtIJLGRRCJ8mBTjCKc21LMaWBLtzQJMoqGYH+YZSSb+z43KQqYCj0lByDreaUmkHIMdfxgDr33pkdE7njzhnDhGILC8ZGpfRzNn2zvP9vOmuN5qvG2rv1le3Xk4dtET1Fz9AqaqINtI320RE6QSH6hn6gn+hX7aL2qfa59mWMzs9NfJ6gmVX7/gfN0Cde</latexit>
Dh
<latexit sha1_base64="jUym4hKaTSv8lyIl/8Muj2lzdyM=">AAAFx3icdZTfTxQxEMcLcornL1DffNlITHy63J6Hh4kmBAjBhAQkclxCL5fu7iystN2l7Z63Nvvg3+GLr/of+d/YwgFei00228z3M7Od6exEBc2karf/zM3fWWjcvbd4v/ng4aPHT5aWn/ZlXooYDuOc5mIQEQk043CoMkVhUAggLKJwFJ1tWv1oDEJmOf+sqgKGjJzwLM1iooxptPQcM6JOY0L1Vj3CCiZKn9ajpZV2qxP2wl43aLfednqr70Kz6YZrvdVeELbaF2sFTdf+aHnhB07yuGTAVUyJlMdhu1BDTYTKYgp1E5cSChKfkRM4NltOGMihvjh+HbwyliRIc2EeroIL678emjApKxYZ0h5Wupo13qYdlypdG+qMF6UCHl9+KC1poPLA1iJoNjGHr3HOGOGJxlGa1tq8cprYz+U0SOvaQbhDcI8oHaL0iLFDjD2i7xB9j5g4xMQjBg4x8Ihzhzj3iMIhCpdgiSVs5QXTSe0F2LySozTY9NRtJ/y2S+wd1Pq6Qfc8f6veuOsDD9idBXY9QMwCwgXoFwNQGgnTUaAcUVhRiNtFZa8Zq4wmYJNM7S07CBgACpnRnDtKAtRcMN4Cqoi5Wk+srsXKzch2Bo6I0H5HRNVUqlwpPr2pc7AzI2JWwbnGUpkkBdApRklhbIxQik3hJjZRXukEzA9T1/qDG1/YVO1wMV1yAK5aUGoboSDCxAPqnXtjtk30ht9nnESUOBi+NNZ2nF3NrOD/m36nFb5pdT51V9bfTwfbInqBXqLXKEQ9tI520D46RDH6hn6iX+h342Mjb4wbk0t0fm7q8wzNrMb3v2IjHj0=</latexit>
ˆ
ex
<latexit sha1_base64="/1JNXlIXRnekeN72WWKxpuGtIac=">AAAFxXicbZTfb9MwEMe9scIov7rxyEtEhcTT1A4keABp2tDYw6SNiXWV5qpykssadnYy2ymNrIg/BIlX+Jf4b7DXwqg9S1FO9/3cxXe+OC4xV7rX+72yemetdffe+v32g4ePHj/pbGwOVFHJBE6TAgs5jJkCzAWc6lwjDEsJjMcIZ/HlntPPpiBVXojPui5hxNmFyLM8Ydq6xp1NOmHaUM70JM4MNM14Nu50e1u96xWFRn9hdMliHY831r7TtEgqDkInyJQ67/dKPTJM6jxBaNq0UlCy5JJdwLk1BeOgRuZ68030wnrSKCukfYSOrr3/RxjGlap5bEm3S+Vrznmbdl7p7O3I5KKsNIhk/qGswkgXketE1G5TAV+TgnMmUkPjLGuMfRWYus8VGGVN4yHCI0RAVB5RBcTUI6YBMfCIQUDMPGIWEEOPGAbElUdcBUTpEaVP8NQRrvOSm7QJEuz9leMs2gvUfS/9vk8cnTTz8IShOQrinXoTbk4C4HAZOAwAuQxIH8AvFkCMpZ0o0J4onSjl7aJ2x0x1jim4IjN3yh4CFoBS5VgIT0kB7QHTD4Ca2aMNxPqfWPsVucmgMZMmnIi4Xki1LyWTmz5HB0si5TVcGaq0LVICLjBkpfVxhkht42auUFGbFOwP0zTmvZ9fulI1zLSdkhPw1RLRDULJpM0HGOx7d3lMzG44Z4LFyDyMzp32Qut0+/7lFRqD7a3+q63tT6+7O+8WF9s6eUaek5ekT96QHXJAjskpSciM/CA/ya/WxxZv6dZ0jq6uLGKekqXV+vYHVV0dFg==</latexit>
ˆ
ey
<latexit sha1_base64="icFgrFIItWrTDVaU6cgUEJm8bao=">AAAFxXicbZTfb9MwEMe9scIov7rxyEtEhcTT1A4keABp2tDYw6SNiXWV5qpykssadnYy2ymNrIg/BIlX+Jf4b7DXwqg9S1FO9/3cxXe+OC4xV7rX+72yemetdffe+v32g4ePHj/pbGwOVFHJBE6TAgs5jJkCzAWc6lwjDEsJjMcIZ/HlntPPpiBVXojPui5hxNmFyLM8Ydq6xp1NOmHaUM70JM4MNM24Hne6va3e9YpCo78wumSxjscba99pWiQVB6ETZEqd93ulHhkmdZ4gNG1aKShZcsku4NyagnFQI3O9+SZ6YT1plBXSPkJH197/IwzjStU8tqTbpfI157xNO6909nZkclFWGkQy/1BWYaSLyHUiarepgK9JwTkTqaFxljXGvgpM3ecKjLKm8RDhESIgKo+oAmLqEdOAGHjEICBmHjELiKFHDAPiyiOuAqL0iNIneOoI13nJTdoECfb+ynEW7QXqvpd+3yeOTpp5eMLQHAXxTr0JNycBcLgMHAaAXAakD+AXCyDG0k4UaE+UTpTydlG7Y6Y6xxRckZk7ZQ8BC0CpciyEp6SA9oDpB0DN7NEGYv1PrP2K3GTQmEkTTkRcL6Tal5LJTZ+jgyWR8hquDFXaFikBFxiy0vo4Q6S2cTNXqKhNCvaHaRrz3s8vXakaZtpOyQn4aonoBqFk0uYDDPa9uzwmZjecM8FiZB5G5057oXW6ff/yCo3B9lb/1db2p9fdnXeLi22dPCPPyUvSJ2/IDjkgx+SUJGRGfpCf5FfrY4u3dGs6R1dXFjFPydJqffsDWqsdFw==</latexit>
O
<latexit sha1_base64="dnACAbTEszD8Pmf7f+ZlDPedkio=">AAAFsnicbZTfb9MwEMe9scIovzZ45CViQuJpasckeABp2tC0h0ndJtpVNNXkOJct7OyktlMaWfkLeIUn/jL+G+y1MGrPUpTTfT93zvkuTkrMle50fq+s3ltr3X+w/rD96PGTp882Np8PVFFJBn1WYCGHCVWAuYC+zjXCsJRAeYJwnlwfOP18ClLlhfis6xLGnF6KPMsZ1dZ12rvY2Opsd25WFBrdhbFFFuvkYnPtV5wWrOIgNEOq1KjbKfXYUKlzhtC040pBSdk1vYSRNQXloMbm5kub6LX1pFFWSPsIHd14/48wlCtV88SSnOor5WvOeZc2qnT2fmxyUVYaBJtvlFUY6SJyZUftdizgGys4pyI1cZJljbGvAlO3XYFR1jQeIjxCBETlEVVATD1iGhADjxgExMwjZgEx9IhhQEw8YhIQpUeUPsFTR7iTl9ykTZDg4K+cZNFBoB566Q99onfWzMMZRdML4p16G27OAuB4GTgOALkMSB/ArxZATKSdKNCeKJ0o5d2idm2OdY4puCIz12UPAQtAqXIshKekgLbB8SdATW1rA7H+J9Z+RW4y4oRKE05EUi+k2pfY1e05R0dLYsxrmJhYaVukBFxgSEvr4xQxtgc3c4WK2qRgf5imMR/9/NKVqmGm7ZScga+WiG4QSiptPsDgu/eXx8Tsh3MmaILUw+K5s2nsddb1L6/QGOxsd99u75zubu19WFxs6+QleUXekC55R/bIETkhfcIIkO/kB/nZ2m19adEWm6OrK4uYF2RptfAP5x4U9w==</latexit>
xf(s, t)
<latexit sha1_base64="yxyqbtC0IPAmiOsosKsgmCavY18=">AAAFy3icbZTdThQxFMcLsorrB4vemHgzkZhgYsgumuiNCQFDuMCARJZN6GbTmTkDI6edoe3gjnW88ym89Vbfx7exZVdxW5pM5uT8f6ed8zGNS8yV7nZ/z83fWGjdvLV4u33n7r37S53lB31VVDKBw6TAQg5ipgBzAYc61wiDUgLjMcJRfLbl9KMLkCovxAddlzDk7ETkWZ4wbV2jziPKmT6NMzNuRlTDWJusWVXP9bNRZ6W71r1cUWj0psYKma790fLCd5oWScVB6ASZUse9bqmHhkmdJwhNm1YKSpacsRM4tqZgHNTQXKbQRE+tJ42yQtpH6OjS+3+EYVypmseWdB+sfM05r9OOK529HppclJUGkUwOyiqMdBG5ekTtNhXwKSk4ZyI1NM6yxthXgak7rsAoaxoPER4hAqLyiCogLjziIiD6HtEPiLFHjANi4BGDgDj3iPOAKD2i9AmeOsJVXnKTNsEGW3/lOIu2AnXb237bJ/YOmkl4wtDsBfFOvQo3BwGwOwvsBoCcBaQP4EcLIMbSThRoT5ROlPJ6Ubs2U51jCi7JzHXZQ8ACUKocC+EpKaBtMH0LqJltbSDW/8Taz8hNBo2ZNOFExPVUqn0pOb2qc7QzI1Jew7mhStskJeAUQ1ZaH2eI1BZu7BIVtUnB/jBNY974+0uXqrth7JQcgK+WiG4QSibtfoDBd2/OjonZDOdMsBiZh9GJs2nsddbzL6/Q6K+v9V6srb9/ubKxOb3YFslj8oSskh55RTbIDtknhyQhX8kP8pP8ar1rqdbn1pcJOj83jXlIZlbr2x+4WR9F</latexit>
FIG. 1. (a) Schematic of a swimming spermatozoon. In our model, a spheroidal head (shown in green) is clamped to a flexible
flagellum described as a planar spacecurve with centerline xf(s,t). (b) Free body diagram illustrating the balance of forces and
moments at the head-flagellum junction.
where G(x,x0) is the 3D free-space Green’s function for Stokes flow, and Dhdenotes the 2D surface of the head. The
right-hand side in Eq. (5) involves the force per unit length exerted by the flagellum on the fluid ffsF=fvis
through a mobility operator Mwith two contributions: M=L+K[42]. The local part L[ff] accounts for drag
anisotropy along the flagellum and is given by
L[ff](s) = 1
ξ
ˆ
n(s)ˆ
n(s) + 1
ξk
ˆ
t(s)ˆ
t(s)·ff(s),(7)
where ξ= (2 c)1and ξk=(2c)1are resistance coefficients in the normal and tangential directions, and
c= ln(2e) <0. Non-local hydrodynamic interactions between distant flagellar sections are captured by K[ff] defined
as
K[ff](s) = ZL
0"I+ˆ
R(s, s0)ˆ
R(s, s0)
|R(s, s0)|·ff(s0)I+ˆ
t(s)ˆ
t(s)
|ss0|·ff(s)#ds0,(8)
where R(s, s0) = xf(s)xf(s0) and ˆ
R=R/|R|.
B. Active filament model
Here, we provide a concise overview of the active filament model for the flagellum, which directly follows our past
work on clamped filaments [7] as well as a prior model by Oriola et al. [19]. These build on an earlier model by
Riedel-Kruse et al. [6] and on seminal work by Brokaw [5,8]. The interested reader is pointed to these references for
further details. We idealize the 3D axoneme by its planar projection in the plane of motion, described as an elastic
structure of width a, length L, and centerline xf(s). In this projection, microtubules from the opposite sides of the
axoneme are represented by two polar filaments x±=xf±aˆ
n/2 clamped at the base at s= 0 and connected to one
another by passive nexin crosslinkers as well as dynein motors, which exert shear forces ±fm(s)ˆ
t(s) per unit length.
These forces result in a sliding displacement ∆(s, t) = a(φ(s, t)φ(0, t)) between the two filaments. The sliding
force density can be expressed as
fm(s, t) = ρ(n+F++nF)K∆(s, t),(9)
where ρis the line density of motors, n±(s, t) is the fraction of bound motors on x±,F±is the force exerted by an
individual dynein, and Kis the stiffness of nexin links modeled as linear springs. The force exerted by the motors
follows a linear force- velocity relation F±=±f0(1 ˙
∆(s, t)/v0), where f0is the stall force of dynein, ˙
∆ is the sliding
velocity, and v0is a characteristic velocity scale. The inability of the microtubules to freely slide apart means that
the sliding forces give rise to an active bending moment
M(s, t) = ˆ
ez"Bφs(s, t)aZL
s
fm(s0, t) ds0#,(10)
where Bis the bending rigidity of the flagellum. Moment balance in the out-of-plane direction from equation (4)
yields
Bφss +afm+N= 0.(11)
摘要:

AchemomechanicalmodelofspermlocomotionrevealstwomodesofswimmingChenjiLi,1BratoChakrabarti,2PedroCastilla,1AchalMahajan,1andDavidSaintillan1,1DepartmentofMechanicalandAerospaceEngineering,UniversityofCaliforniaSanDiego,LaJolla,CA92093,USA2CenterforComputationalBiology,FlatironInstitute,NewYork,NY100...

展开>> 收起<<
A chemomechanical model of sperm locomotion reveals two modes of swimming Chenji Li1Brato Chakrabarti2Pedro Castilla1Achal Mahajan1and David Saintillan1 1Department of Mechanical and Aerospace Engineering.pdf

共15页,预览3页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:15 页 大小:7.86MB 格式:PDF 时间:2025-04-27

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 15
客服
关注