Improved Measurement of the Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay F. P. An1W. D. Bai1A. B. Balantekin2M. Bishai3S. Blyth4G. F. Cao5J. Cao5J. F. Chang5Y . Chang6

2025-05-08 0 0 399.33KB 8 页 10玖币
侵权投诉
Improved Measurement of the Evolution of the Reactor Antineutrino Flux and Spectrum at Daya
Bay
F. P. An,1W. D. Bai,1A. B. Balantekin,2M. Bishai,3S. Blyth,4G. F. Cao,5J. Cao,5J. F. Chang,5Y. Chang,6
H. S. Chen,5H. Y. Chen,7S. M. Chen,7Y. Chen,8, 1 Y. X. Chen,9J. Cheng,9J. Cheng,9Y.-C. Cheng,4Z. K. Cheng,1
J. J. Cherwinka,2M. C. Chu,10 J. P. Cummings,11 O. Dalager,12 F. S. Deng,13 Y. Y. Ding,5M. V. Diwan,3T. Dohnal,14
D. Dolzhikov,15 J. Dove,16 K. V. Dugas,12 H. Y. Duyang,17 D. A. Dwyer,18 J. P. Gallo,19 M. Gonchar,15 G. H. Gong,7
H. Gong,7W. Q. Gu,3J. Y. Guo,1L. Guo,7X. H. Guo,20 Y. H. Guo,21 Z. Guo,7R. W. Hackenburg,3Y. Han,1S. Hans,3,
M. He,5K. M. Heeger,22 Y. K. Heng,5Y. K. Hor,1Y. B. Hsiung,4B. Z. Hu,4J. R. Hu,5T. Hu,5Z. J. Hu,1H. X. Huang,23
J. H. Huang,5X. T. Huang,17 Y. B. Huang,24 P. Huber,25 D. E. Jaffe,3K. L. Jen,26 X. L. Ji,5X. P. Ji,3R. A. Johnson,27
D. Jones,28 L. Kang,29 S. H. Kettell,3S. Kohn,30 M. Kramer,18, 30 T. J. Langford,22 J. Lee,18 J. H. C. Lee,31 R. T. Lei,29
R. Leitner,14 J. K. C. Leung,31 F. Li,5H. L. Li,5J. J. Li,7Q. J. Li,5R. H. Li,5S. Li,29 S. C. Li,25 W. D. Li,5X. N. Li,5
X. Q. Li,32 Y. F. Li,5Z. B. Li,1H. Liang,13 C. J. Lin,18 G. L. Lin,26 S. Lin,29 J. J. Ling,1J. M. Link,25 L. Littenberg,3
B. R. Littlejohn,19 J. C. Liu,5J. L. Liu,33 J. X. Liu,5C. Lu,34 H. Q. Lu,5K. B. Luk,30, 18, 35 B. Z. Ma,17 X. B. Ma,9X. Y. Ma,5
Y. Q. Ma,5R. C. Mandujano,12 C. Marshall,18, K. T. McDonald,34 R. D. McKeown,36, 37 Y. Meng,33 J. Napolitano,28
D. Naumov,15 E. Naumova,15 T. M. T. Nguyen,26 J. P. Ochoa-Ricoux,12 A. Olshevskiy,15 J. Park,25 S. Patton,18 J. C. Peng,16
C. S. J. Pun,31 F. Z. Qi,5M. Qi,38 X. Qian,3N. Raper,1J. Ren,23 C. Morales Reveco,12 R. Rosero,3B. Roskovec,14
X. C. Ruan,23 B. Russell,18 H. Steiner,30, 18 J. L. Sun,39 T. Tmej,14 K. Treskov,15 W.-H. Tse,10 C. E. Tull,18 Y. C. Tung,4
B. Viren,3V. Vorobel,14 C. H. Wang,6J. Wang,1M. Wang,17 N. Y. Wang,20 R. G. Wang,5W. Wang,1, 37 X. Wang,40
Y. Wang,38 Y. F. Wang,5Z. Wang,5Z. Wang,7Z. M. Wang,5H. Y. Wei,3, L. H. Wei,5L. J. Wen,5K. Whisnant,41
C. G. White,19 H. L. H. Wong,30, 18 E. Worcester,3D. R. Wu,5Q. Wu,17 W. J. Wu,5D. M. Xia,42 Z. Q. Xie,5Z. Z. Xing,5
H. K. Xu,5J. L. Xu,5T. Xu,7T. Xue,7C. G. Yang,5L. Yang,29 Y. Z. Yang,7H. F. Yao,5M. Ye,5M. Yeh,3B. L. Young,41
H. Z. Yu,1Z. Y. Yu,5B. B. Yue,1V. Zavadskyi,3, 15 S. Zeng,5Y. Zeng,1L. Zhan,5C. Zhang,3F. Y. Zhang,33 H. H. Zhang,1
J. L. Zhang,38 J. W. Zhang,5Q. M. Zhang,21 S. Q. Zhang,1X. T. Zhang,5Y. M. Zhang,1Y. X. Zhang,39 Y. Y. Zhang,33
Z. J. Zhang,29 Z. P. Zhang,13 Z. Y. Zhang,5J. Zhao,5R. Z. Zhao,5L. Zhou,5H. L. Zhuang,5and J. H. Zou5
(The Daya Bay Collaboration)
1Sun Yat-Sen (Zhongshan) University, Guangzhou
2University of Wisconsin, Madison, Wisconsin 53706
3Brookhaven National Laboratory, Upton, New York 11973
4Department of Physics, National Taiwan University, Taipei
5Institute of High Energy Physics, Beijing
6National United University, Miao-Li
7Department of Engineering Physics, Tsinghua University, Beijing
8Shenzhen University, Shenzhen
9North China Electric Power University, Beijing
10Chinese University of Hong Kong, Hong Kong
11Siena College, Loudonville, New York 12211
12Department of Physics and Astronomy, University of California, Irvine, California 92697
13University of Science and Technology of China, Hefei
14Charles University, Faculty of Mathematics and Physics, Prague
15Joint Institute for Nuclear Research, Dubna, Moscow Region
16Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
17Shandong University, Jinan
18Lawrence Berkeley National Laboratory, Berkeley, California 94720
19Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
20Beijing Normal University, Beijing
21Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an
22Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
23China Institute of Atomic Energy, Beijing
24Guangxi University, No.100 Daxue East Road, Nanning
25Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
26Institute of Physics, National Chiao-Tung University, Hsinchu
27Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
28Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
29Dongguan University of Technology, Dongguan
30Department of Physics, University of California, Berkeley, California 94720
31Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
arXiv:2210.01068v2 [hep-ex] 23 May 2023
2
32School of Physics, Nankai University, Tianjin
33Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
34Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
35The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
36California Institute of Technology, Pasadena, California 91125
37College of William and Mary, Williamsburg, Virginia 23187
38Nanjing University, Nanjing
39China General Nuclear Power Group, Shenzhen
40College of Electronic Science and Engineering, National University of Defense Technology, Changsha
41Iowa State University, Ames, Iowa 50011
42Chongqing University, Chongqing
(Dated: October 4, 2022)
Reactor neutrino experiments play a crucial role in advancing our knowledge of neutrinos. A precise
measurement of reactor electron antineutrino flux and spectrum evolution can be key inputs in improving the
knowledge of neutrino mass and mixing as well as reactor nuclear physics and searching for physics beyond the
standard model. In this work, the evolution of the flux and spectrum as a function of the reactor isotopic content
is reported in terms of the inverse-beta-decay yield at Daya Bay with 1958 days of data and improved systematic
uncertainties. These measurements are compared with two signature model predictions: the Huber-Mueller
model based on the conversion method and the SM2018 model based on the summation method. The measured
average flux and spectrum, as well as their evolution with the 239Pu isotopic fraction, are inconsistent with the
predictions of the Huber-Mueller model. In contrast, the SM2018 model is shown to agree with the average
flux and its evolution but fails to describe the energy spectrum. Altering the predicted IBD spectrum from
239Pu fission does not improve the agreement with the measurement for either model. The models can be
brought into better agreement with the measurements if either the predicted spectrum due to 235Ufission is
changed or the predicted 235U,238U,239Pu, and 241Pu spectra are changed in equal measure.
PACS numbers: 14.60.Pq, 29.40.Mc, 28.50.Hw, 13.15.+g
Keywords: reactor antineutrino anomaly, sterile neutrino, 5 MeV bump, Huber-Mueller Model, Daya Bay
The detection of reactor electron antineutrinos with the
inverse-beta-decay (IBD) process plays a crucial role in
advancing our knowledge of neutrinos including the discovery
of neutrinos [1], establishment of large mixing angle solution
of neutrino oscillation [2], and the discovery of non-zero
mixing angle θ13 [3]. Looking forward, the JUNO experiment
requires an accurate knowledge of the reactor neutrino
spectrum to determine the neutrino mass ordering [4].
For commercial reactors, uranium isotopes are introduced
at beginning of a fueling cycle and plutonium isotopes are
gradually generated. Four fission isotopes 235U,238U,239Pu,
and 241Pu account for over the 99.7% of the antineutrino
flux with energy above the IBD detection threshold [5].
A reactor antineutrino prediction, the Huber-Mueller (HM)
model [6, 7], is determined by converting cumulative beta
spectra to antineutrino spectra for 235U,239Pu, and 241Pu and
by summing all involved beta decay branches in databases for
238U. The average of reactor neutrino flux measurements is
only 95%-96% of the HM prediction, known as the reactor
antineutrino anomaly (RAA) [8–11]. Another anomaly is
about the spectrum. The measured neutrino spectrum is
poorly described by the HM model, e.g. a notable “bump”
around 5 MeV [12–14].
Together with other experimental anomalies at
short-baseline [15–17], the RAA has motivated a new
generation of short-baseline reactor neutrino experiments
to search for a sterile neutrino [18–24]. The effect of
weak magnetism [25], neutron capture [26], fission-neutron
energy [27] and database inaccuracies [28] on the prediction
has been postulated. In particular, approximately 30% of the
antineutrino flux comes from forbidden decays which can
imply an uncertainty as large as the total flux deficit and the
bump [29–33].
Another prediction approach is the summation method,
which adds up all related decay branches from databases
for all four isotopes. One such example, the SM2018
calculation [34], with the latest experimental inputs, predicted
a uniformly lower flux from 235Uthan the HM model.
Kopeikin et al. [35] reported the measured ratio between
cumulative βspectra from 235Uand 239Pu that is also
systematically lower than the HM prediction. Both SM2018
and Kopeikin imply a much smaller discrepancy with neutrino
flux measurement than HM.
The most recent results from Daya Bay on the total flux
in terms of IBD yield, i.e., the number of antineutrinos
per fission multiplied by the IBD cross section [9] and
evolution of the spectrum as a function of reactor burnup
used a 1230-day data sample [36]. These results showed
that the 235Uyield is about 8% less than the HM prediction
while the 239Pu yield is consistent with the model. The
latest total and energy differential yields from 235Uand
239Pu with a 1958-day data sample are reported in Ref. [37].
Evolution studies have been performed for the NEOS [38] and
RENO [39] experiments.
In this Letter, using the 1958-day data sample taken
from December 2011 to August 2017 with the Daya Bay
experiment [40], we report the direct measurement of the
total and energy differential IBD yields, σand σe, and
摘要:

ImprovedMeasurementoftheEvolutionoftheReactorAntineutrinoFluxandSpectrumatDayaBayF.P.An,1W.D.Bai,1A.B.Balantekin,2M.Bishai,3S.Blyth,4G.F.Cao,5J.Cao,5J.F.Chang,5Y.Chang,6H.S.Chen,5H.Y.Chen,7S.M.Chen,7Y.Chen,8,1Y.X.Chen,9J.Cheng,9J.Cheng,9Y.-C.Cheng,4Z.K.Cheng,1J.J.Cherwinka,2M.C.Chu,10J.P.Cummings,11...

展开>> 收起<<
Improved Measurement of the Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay F. P. An1W. D. Bai1A. B. Balantekin2M. Bishai3S. Blyth4G. F. Cao5J. Cao5J. F. Chang5Y . Chang6.pdf

共8页,预览2页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:8 页 大小:399.33KB 格式:PDF 时间:2025-05-08

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 8
客服
关注