HiSMatch Historical Structure Matching based Temporal Knowledge Graph Reasoning Zixuan Li123 Zhongni Hou12 Saiping Guan12y Xiaolong Jin12 Weihua Peng3

2025-05-06 0 0 1.58MB 11 页 10玖币
侵权投诉
HiSMatch: Historical Structure Matching based Temporal Knowledge
Graph Reasoning
Zixuan Li1,2,3
, Zhongni Hou1,2, Saiping Guan1,2
, Xiaolong Jin1,2, Weihua Peng3,
Long Bai1,2, Yajuan Lyu3, Wei Li3, Jiafeng Guo1,2, Xueqi Cheng1,2
1School of Computer Science and Technology, University of Chinese Academy of Sciences;
2CAS Key Laboratory of Network Data Science and Technology,
Institute of Computing Technology, Chinese Academy of Sciences; 3Baidu Inc.
{lizixuan, houzhongni18z, guansaiping, jinxiaolong}@ict.ac.cn
{pengweihua,lvyajuan}@baidu.com
Abstract
A Temporal Knowledge Graph (TKG) is a se-
quence of KGs with respective timestamps,
which adopts quadruples in the form of (sub-
ject,relation,object,timestamp) to describe
dynamic facts. TKG reasoning has facili-
tated many real-world applications via answer-
ing such queries as (query entity,query rela-
tion,?,future timestamp) about future. This
is actually a matching task between a query
and candidate entities based on their historical
structures, which reflect behavioral trends of
the entities at different timestamps. In addi-
tion, recent KGs provide background knowl-
edge of all the entities, which is also help-
ful for the matching. Thus, in this paper,
we propose the Historical Structure Matching
(HiSMatch) model. It applies two structure
encoders to capture the semantic information
contained in the historical structures of the
query and candidate entities. Besides, it adopts
another encoder to integrate the background
knowledge into the model. TKG reasoning ex-
periments on six benchmark datasets demon-
strate the significant improvement of the pro-
posed HiSMatch model, with up to 5.6% per-
formance improvement in MRR, compared to
the state-of-the-art baselines.
1 Introduction
Knowledge Graphs (KGs), which store facts as
triples in the form of (subject,relation,object),
have been widely applied to many NLP applica-
tions, such as question answering (Lan and Jiang,
2020), dialogue generation (He et al.,2017) and
recommendation (Wang et al.,2019). However,
facts may constantly change over time. Tempo-
ral Knowledge Graphs (TKGs) is a kind of KGs
that describe such dynamic facts by extending each
triple with a timestamp as (subject,relation,object,
timestamp). Usually, a TKG is represented as a
This work was done while the first author was doing
internship at Baidu Inc.
Corresponding author.
sequence of KG snapshots. The TKG reasoning
task is to infer new facts from known ones, which
primarily has two settings, interpolation and extrap-
olation. The former attempts to complete missing
facts in history, while the latter aims to predict fu-
ture facts with historical facts. This paper focuses
on the extrapolation setting, which is more chal-
lenging and far from being solved (Jin et al.,2020).
This task can be seen as answering the query about
the future facts (e.g., (COVID-19,Infect,?,2022-
8-1)) by selecting from all the candidate entities.
The key of answering the queries about future
facts is to understand the history thoroughly. All
the existing models conduct reasoning based on
substructures extracted from the whole history.
These substructures can be divided into two types,
i.e., query-related history (Jin et al.,2019;Zhu
et al.,2021) and candidate-related history (Li et al.,
2021b,2022;Han et al.,2021a;Deng et al.,2020).
The former contains the latest historical facts re-
lated to the subject and relation in the query, which
reflects the behavioral trends of the subject concern-
ing the query relation. The latter contains all the
latest historical facts of the candidates without con-
sidering the query, which indicates the behavioral
trends of all the entities. Both of these two kinds of
history are vital to TKG reasoning. Take the query
(COVID-19,Infect, ?, 2022-8-1) for example, the
query-related history contains facts like (COVID-
19,Infect, *, t), where tis before 2022-8-1. The
candidate-related history of a candidate A, includes
facts reflecting its own behaviors, like (A,*,*,t)
or (*,*,A,t). In the realistic situation, the occur-
rence of the fact (COVID-19,Infect,A,2022-8-1) is
caused by the interactions between these two kinds
of history. However, existing models only focus
on one kind of history and underestimate the other,
which limits their performance on TKG reasoning.
Overall, it still remains a challenge to model both
two kinds of history in a unified framework.
To reduce the computational cost caused by the
arXiv:2210.09708v1 [cs.AI] 18 Oct 2022
enormous facts in history, these two kinds of his-
tory usually contain one hop facts of the centered
entities. Thus, they cannot model the high-order
associations among the entities, which is also vital
to TKG reasoning.
Motivated by these, we consider both query-
related history and candidate-related history under
a matching framework and propose the
Hi
storical
S
tructure
Match
ing (
HiSMatch
) model. Specifi-
cally, it applies two structure encoders to model
the semantic information in the above two kinds of
historical structures, respectively. Then, it obtains
the matching scores. Both of these two structure
encoders contain three components: (1) a structure
semantic component to model the structure depen-
dencies among concurrent facts at the same times-
tamp; (2) a time semantic component to model
the time numerical information of the historical
facts; (3) a sequential pattern component to mine
the behavioral trends from the temporal order in-
formation. Additionally, to model the high-order
associations among the entities, we consider the
most recent KGs as the background knowledge of
each query and apply a GCN-based background
knowledge encoder to obtain more informative en-
tity representations for the two structure encoders.
Our contributions are summarized as follows:
We first advocate the importance of modeling
both query-related and candidate-related his-
tory for TKG reasoning and transform the task
into a matching problem between them.
To solve this problem, we propose HiSMatch
to comprehensively capture the information
in both historical structures via modeling
the structure dependencies among concurrent
facts, the time numerical information of his-
torical facts and the temporal order among
facts. HiSMatch complementally captures
high-order associations among entities by
modeling the recent background knowledge.
Extensive experiments on six commonly
used benchmarks demonstrate that HiSMatch
achieves significantly better performance (up
to 5.6% improvement in MRR) on the TKG
reasoning task.
2 Related Work
TKG Reasoning under the interpolation setting
focuses on completing the missing facts at past
timestamps (Liao et al.,2021;Goel et al.,2020;Wu
et al.,2020;Han et al.,2020a;Jiang et al.,2016;
Dasgupta et al.,2018;Garcia-Duran et al.,2018;
Xu et al.,2021). For example, TTransE (Leblay
and Chekol,2018) extends the idea of TransE (Bor-
des et al.,2013) by adding the temporal order con-
straints among facts. Also, HyTE (Dasgupta et al.,
2018) projects the entities and relations to time-
related hyperplanes to generate time-aware repre-
sentations. TNTComplEx (Lacroix et al.,2020)
performs 4th-order tensor factorization to get the
time-aware representations of entities. However,
they cannot obtain the representations of the unseen
timestamps and are not suitable for the extrapola-
tion setting.
TKG Reasoning under the extrapolation set-
ting
aims to predict facts at future timestamps. Ac-
cording to the historical structure the models focus
on, the existing models can be categorized into two
groups: query-based and candidate-based models.
Query-based models focus on modeling the
query-related history. For example, RE-NET (Jin
et al.,2020) models the query-related subgraph
sequence. GHNN (Han et al.,2020c) introduces
the temporal point process to model the precise
time information and takes the 1-hop subgraphs of
the query entity into consideration. CyGNet (Zhu
et al.,2021) captures repetitive patterns by model-
ing repetitive facts with the same subject and rela-
tion to the query. xERTE (Han et al.,2020b) learns
a dynamic pruning procedure to find the query-
related subgraphs. CluSTeR (Li et al.,2021a) and
TITer (Sun et al.,2021) both adopt reinforcement
learning to discover query-related paths in history.
Candidate-based models encode the latest his-
torical facts of all the candidate entities without
considering the query, and query are considered
only in the decoding phase. RE-GCN and its ex-
tension CEN (Li et al.,2021b,2022) designs an
evolutional model to get the representations of all
the candidates by modeling history at a few lat-
est timestamps. TANGO (Han et al.,2021a) uti-
lizes neural ordinary differential equations to model
the structure information for each candidate entity.
Glean (Deng et al.,2020) introduces unstructured
textual information to enrich the candidate-related
history.
Above all, none of the existing models focus
on both two kinds of history in a unified frame-
work. HiSMatch considers these two kinds of his-
tory under the matching framework and takes the
Candidate Structure EncoderQuery Structure Encoder
Sequential Pattern Component
Structure
Semantic
Component
Time Semantic
Component
Sequential Pattern Component
Matching Function
Structure
Semantic
Component
Time Semantic
Component
-
+
+
Periodic Activation
Function
FCN Layer
Background
Knowledge
Encoder
… …
… …
Query-related Historical Structure
… …
<latexit sha1_base64="KavJDPMS9EyDF0lvQt+TTcogzLU=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHgxZNUsB/QxrDZbtulm026OymUkN/hxYMiXv0x3vw3btsctPXBwOO9GWbmBbHgGh3n2yqsrW9sbhW3Szu7e/sH5cOjpo4SRVmDRiJS7YBoJrhkDeQoWDtWjISBYK1gdDvzWxOmNI/kI05j5oVkIHmfU4JG8tJB5qfou9lTOs78csWpOnPYq8TNSQVy1P3yV7cX0SRkEqkgWndcJ0YvJQo5FSwrdRPNYkJHZMA6hkoSMu2l86Mz+8woPbsfKVMS7bn6eyIlodbTMDCdIcGhXvZm4n9eJ8H+jZdyGSfIJF0s6ifCxsieJWD3uGIUxdQQQhU3t9p0SBShaHIqmRDc5ZdXSfOi6l5V3YfLSu0+j6MIJ3AK5+DCNdTgDurQAApjeIZXeLMm1ov1bn0sWgtWPnMMf2B9/gBqTZKP</latexit>
gq
t1
<latexit sha1_base64="K6x9mmdKgoEIUAK0RHAfGyiiTC4=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHgxZNUsB/QxrDZbtulm026OymUkN/hxYMiXv0x3vw3btsctPXBwOO9GWbmBbHgGh3n2yqsrW9sbhW3Szu7e/sH5cOjpo4SRVmDRiJS7YBoJrhkDeQoWDtWjISBYK1gdDvzWxOmNI/kI05j5oVkIHmfU4JG8tJB5qfo8+wpHWd+ueJUnTnsVeLmpAI56n75q9uLaBIyiVQQrTuuE6OXEoWcCpaVuolmMaEjMmAdQyUJmfbS+dGZfWaUnt2PlCmJ9lz9PZGSUOtpGJjOkOBQL3sz8T+vk2D/xku5jBNkki4W9RNhY2TPErB7XDGKYmoIoYqbW206JIpQNDmVTAju8surpHlRda+q7sNlpXafx1GEEziFc3DhGmpwB3VoAIUxPMMrvFkT68V6tz4WrQUrnzmGP7A+fwDARZLH</latexit>
gq
ti
<latexit sha1_base64="dnZaEV6WUNFZU6Loos418nwoNMs=">AAAB9HicbVBNSwMxEM3Wr1q/qh69BIvgqeyKqMeCF09SwX5Auy7ZNG1Dk+w2mS2UZX+HFw+KePXHePPfmLZ70NYHA4/3ZpiZF8aCG3Ddb6ewtr6xuVXcLu3s7u0flA+PmiZKNGUNGolIt0NimOCKNYCDYO1YMyJDwVrh6HbmtyZMGx6pR5jGzJdkoHifUwJW8tNBFqQQyOwpHWdBueJW3TnwKvFyUkE56kH5q9uLaCKZAiqIMR3PjcFPiQZOBctK3cSwmNARGbCOpYpIZvx0fnSGz6zSw/1I21KA5+rviZRIY6YytJ2SwNAsezPxP6+TQP/GT7mKE2CKLhb1E4EhwrMEcI9rRkFMLSFUc3srpkOiCQWbU8mG4C2/vEqaF1Xvquo9XFZq93kcRXSCTtE58tA1qqE7VEcNRNEYPaNX9OZMnBfn3flYtBacfOYY/YHz+QPGaZLL</latexit>
gq
tm
Periodic Activation
Function
FCN Layer
Background KG
<latexit sha1_base64="wbU3O+mEpebFJho7nYcDhYbgciI=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwY0lE1GXBjQuRCvYBtZRkOq2DeTmZCKW48wfc6oeJf6B/4Z0xBbWITkhy5txz7sy9108CkSrHeS1YM7Nz8wvFxdLS8srqWnl9o5nGmWS8weIglm3fS3kgIt5QQgW8nUjuhX7AW/7NiY637rhMRRxdqlHCu6E3jMRAME8R1VK92z3VE71yxak6ZtnTwM1BBfmqx+UXXKGPGAwZQnBEUIQDeEjp6cCFg4S4LsbESULCxDnuUSJvRipOCo/YG/oOadfJ2Yj2Omdq3IxOCeiV5LSxQ56YdJKwPs028cxk1uxvuccmp77biP5+niskVuGa2L98E+V/fboWhQGOTQ2CakoMo6tjeZbMdEXf3P5SlaIMCXEa9ykuCTPjnPTZNp7U1K5765n4m1FqVu9Zrs3wrm9JA3Z/jnMaNPer7mHVvTio1M7zURexhW3s0jyPUMMp6miYKh/xhGfrzJLWyBp/Sq1C7tnEt2U9fACZrZIA</latexit>
tqti
rr
<latexit sha1_base64="4f1/heYS117oMZ/Nn07a291sRyk=">AAAC3HicjVHLSsNAFD2Nr1pfVRcu3ASL6EJKIqIuC25cSQX7gL5I0mkdzItkIpTQnTtx6w+41e8R/0D/wjtjBLWITkhy5tx7ztw71w5dHgvDeMlpU9Mzs3P5+cLC4tLySnF1rR4HSeSwmhO4QdS0rZi53Gc1wYXLmmHELM92WcO+OpHxxjWLYh74F2IUso5nDX0+4I4liOoVN9qeJS7tQToc91Kx0+Pjbsr23HGvWDLKhlr6JDAzUEK2qkHxGW30EcBBAg8MPgRhFxZielowYSAkroOUuIgQV3GGMQqkTSiLUYZF7BV9h7RrZaxPe+kZK7VDp7j0RqTUsU2agPIiwvI0XcUT5SzZ37xT5SlrG9Hfzrw8YgUuif1L95n5X53sRWCAY9UDp55CxcjunMwlUbciK9e/dCXIISRO4j7FI8KOUn7es640sepd3q2l4q8qU7Jy72S5Cd5klTRg8+c4J0F9v2wels3zg1LlLBt1HpvYwi7N8wgVnKKKmqr/AY940rrajXar3X2karlMs45vS7t/B3kPmV4=</latexit>
ge,l
t0
i
<latexit sha1_base64="82b4fNPOLcQa2rHDil4diQwbGk8=">AAAC2XicjVHLSsNAFD3G9zs+dm6CRXBVEhF1WXDjShRsLdQaknTaDs3LZCLUkIU7cesPuNUfEv9A/8I7YwQfiE5Icubce87MvdeNfZ4K03we0UbHxicmp6ZnZufmFxb1peVGGmWJx+pe5EdJ03VS5vOQ1QUXPmvGCXMC12en7mBfxk8vWZLyKDwRw5i1A6cX8i73HEGUra+eBY7ou928V9i5sHlxnl8Utl4xq6Zaxk9glaCCch1F+hPO0EEEDxkCMIQQhH04SOlpwYKJmLg2cuISQlzFGQrMkDajLEYZDrED+vZo1yrZkPbSM1Vqj07x6U1IaWCDNBHlJYTlaYaKZ8pZsr9558pT3m1If7f0CogV6BP7l+4j8786WYtAF3uqBk41xYqR1XmlS6a6Im9ufKpKkENMnMQdiieEPaX86LOhNKmqXfbWUfEXlSlZuffK3Ayv8pY0YOv7OH+CxlbV2qlax9uV2mE56imsYR2bNM9d1HCAI9TJ+wr3eMCj1tKutRvt9j1VGyk1K/iytLs3Ri6YjQ==</latexit>
gq
ti
<latexit sha1_base64="TahbkboAySbVZvYV8T/Iq3uUNqg=">AAAC2XicjVHLSsNAFD2Nr1pf8bFzEyyCq5KIqMuCG1dSwT6grSVJp20wL5OJWEMX7sStP+BWf0j8A/0L74wpqEV0QpIz595zZu69Vug6Mdf115wyNT0zO5efLywsLi2vqKtrtThIIptV7cANooZlxsx1fFblDndZI4yY6Vkuq1sXRyJev2JR7AT+GR+GrO2Zfd/pObbJieqoGy3P5AOrl16POinvGKPz9HLUUYt6SZdLmwRGBorIViVQX9BCFwFsJPDA4IMTdmEipqcJAzpC4tpIiYsIOTLOMEKBtAllMcowib2gb592zYz1aS88Y6m26RSX3oiUGrZJE1BeRFicpsl4Ip0F+5t3Kj3F3Yb0tzIvj1iOAbF/6caZ/9WJWjh6OJQ1OFRTKBlRnZ25JLIr4ubal6o4OYTECdyleETYlspxnzWpiWXtoremjL/JTMGKvZ3lJngXt6QBGz/HOQlquyVjv2Sc7hXLJ9mo89jEFnZongco4xgVVMn7Bo94wrPSVG6VO+X+M1XJZZp1fFvKwwfpIphm</latexit>
xq
t1
<latexit sha1_base64="0lQmjQeXskv7v/B0k+rfzGS9YNU=">AAAC2XicjVHLSsNAFD2Nr1pf9bFzEyyCq5KIqEvBjSupYB/Q1pKk03YwL5OJqKELd+LWH3CrPyT+gf6Fd8YU1CI6IcmZc+85M/deO3R5LAzjNadNTE5Nz+RnC3PzC4tLxeWVWhwkkcOqTuAGUcO2YuZyn1UFFy5rhBGzPNtldfv8UMbrlyyKeeCfiuuQtT2r7/MedyxBVKe41vIsMbB76dWwk4oOH56lF8NOsWSUDbX0cWBmoIRsVYLiC1roIoCDBB4YfAjCLizE9DRhwkBIXBspcREhruIMQxRIm1AWowyL2HP69mnXzFif9tIzVmqHTnHpjUipY5M0AeVFhOVpuoonylmyv3mnylPe7Zr+dublESswIPYv3SjzvzpZi0AP+6oGTjWFipHVOZlLoroib65/qUqQQ0icxF2KR4QdpRz1WVeaWNUue2up+JvKlKzcO1lugnd5Sxqw+XOc46C2XTZ3y+bJTungOBt1HuvYwBbNcw8HOEIFVfK+wSOe8Kw1tVvtTrv/TNVymWYV35b28AFvSZie</latexit>
xq
ti
<latexit sha1_base64="e+55lYxnSIUFhT4L+s/oJfc/syI=">AAAC2XicjVHLSsNAFD2Nr1pf8bFzEyyCq5KIqMuCG1dSwT6grSVJp20wL5OJWEMX7sStP+BWf0j8A/0L74wpqEV0QpIz595zZu69Vug6Mdf115wyNT0zO5efLywsLi2vqKtrtThIIptV7cANooZlxsx1fFblDndZI4yY6Vkuq1sXRyJev2JR7AT+GR+GrO2Zfd/pObbJieqoGy3P5AOrl16POinveKPz9HLUUYt6SZdLmwRGBorIViVQX9BCFwFsJPDA4IMTdmEipqcJAzpC4tpIiYsIOTLOMEKBtAllMcowib2gb592zYz1aS88Y6m26RSX3oiUGrZJE1BeRFicpsl4Ip0F+5t3Kj3F3Yb0tzIvj1iOAbF/6caZ/9WJWjh6OJQ1OFRTKBlRnZ25JLIr4ubal6o4OYTECdyleETYlspxnzWpiWXtoremjL/JTMGKvZ3lJngXt6QBGz/HOQlquyVjv2Sc7hXLJ9mo89jEFnZongco4xgVVMn7Bo94wrPSVG6VO+X+M1XJZZp1fFvKwwd43Zii</latexit>
xq
tm
<latexit sha1_base64="/2qFObq8lK6BiOgAVy8Ad59Z6YA=">AAAC2XicjVHLSsNAFD2Nr1pf8bFzEyyCq5KIqMuCG1dSwT6grSVJp21oXiYToYYu3Ilbf8Ct/pD4B/oX3hlTUIvohCRnzr3nzNx7rdB1Yq7rrzllZnZufiG/WFhaXlldU9c3anGQRDar2oEbRA3LjJnr+KzKHe6yRhgx07NcVreGJyJev2ZR7AT+BR+FrO2Zfd/pObbJieqoWy3P5AOrlw7GnZR3vPFlejXuqEW9pMulTQMjA0VkqxKoL2ihiwA2Enhg8MEJuzAR09OEAR0hcW2kxEWEHBlnGKNA2oSyGGWYxA7p26ddM2N92gvPWKptOsWlNyKlhl3SBJQXERanaTKeSGfB/uadSk9xtxH9rczLI5ZjQOxfuknmf3WiFo4ejmUNDtUUSkZUZ2cuieyKuLn2pSpODiFxAncpHhG2pXLSZ01qYlm76K0p428yU7Bib2e5Cd7FLWnAxs9xToPafsk4LBnnB8XyWTbqPLaxgz2a5xHKOEUFVfK+wSOe8Kw0lVvlTrn/TFVymWYT35by8AFSLZiS</latexit>
hq
tm
<latexit sha1_base64="pCujRHv1fZO4BvlEybf9jRzcpck=">AAAC2XicjVHLSsNAFD3G9zs+dm6CRXBVEhF1WXDjShRsLdQaknTaDs3LZCLUkIU7cesPuNUfEv9A/8I7YwQfiE5Icubce87MvdeNfZ4K03we0UbHxicmp6ZnZufmFxb1peVGGmWJx+pe5EdJ03VS5vOQ1QUXPmvGCXMC12en7mBfxk8vWZLyKDwRw5i1A6cX8i73HEGUra+eBY7ou928X9i5sHlxnl8Utl4xq6Zaxk9glaCCch1F+hPO0EEEDxkCMIQQhH04SOlpwYKJmLg2cuISQlzFGQrMkDajLEYZDrED+vZo1yrZkPbSM1Vqj07x6U1IaWCDNBHlJYTlaYaKZ8pZsr9558pT3m1If7f0CogV6BP7l+4j8786WYtAF3uqBk41xYqR1XmlS6a6Im9ufKpKkENMnMQdiieEPaX86LOhNKmqXfbWUfEXlSlZuffK3Ayv8pY0YOv7OH+CxlbV2qlax9uV2mE56imsYR2bNM9d1HCAI9TJ+wr3eMCj1tKutRvt9j1VGyk1K/iytLs3SJmYjg==</latexit>
hq
ti
<latexit sha1_base64="8zDXwjYRE+VtN8BwvG0cTs4qvnI=">AAAC2XicjVHLSsNAFD2Nr1pf8bFzEyyCq5KIqMuCG1dSwT6grSVJp21oXiYToYYu3Ilbf8Ct/pD4B/oX3hlTUIvohCRnzr3nzNx7rdB1Yq7rrzllZnZufiG/WFhaXlldU9c3anGQRDar2oEbRA3LjJnr+KzKHe6yRhgx07NcVreGJyJev2ZR7AT+BR+FrO2Zfd/pObbJieqoWy3P5AOrlw7GnZR3jPFlejXuqEW9pMulTQMjA0VkqxKoL2ihiwA2Enhg8MEJuzAR09OEAR0hcW2kxEWEHBlnGKNA2oSyGGWYxA7p26ddM2N92gvPWKptOsWlNyKlhl3SBJQXERanaTKeSGfB/uadSk9xtxH9rczLI5ZjQOxfuknmf3WiFo4ejmUNDtUUSkZUZ2cuieyKuLn2pSpODiFxAncpHhG2pXLSZ01qYlm76K0p428yU7Bib2e5Cd7FLWnAxs9xToPafsk4LBnnB8XyWTbqPLaxgz2a5xHKOEUFVfK+wSOe8Kw0lVvlTrn/TFVymWYT35by8AHCcphW</latexit>
hq
t1
<latexit sha1_base64="pKIHNqOAOEw9XirWKrg6aCIkYJ8=">AAAC2nicjVHLSsNAFD2Nr1pfUXHlJlhEVyURUZcFN66kgn1AW0uSTtvQvEgmYgnduBO3/oBb/SDxD/QvvDOmoBbRCUnOnHvPmbn3WqHrxFzXX3PKzOzc/EJ+sbC0vLK6pq5v1OIgiWxWtQM3iBqWGTPX8VmVO9xljTBipme5rG4NT0W8fs2i2An8Sz4KWdsz+77Tc2yTE9VRt1qeyQdWL70Zd1K+1zHGVykbd9SiXtLl0qaBkYEislUJ1Be00EUAGwk8MPjghF2YiOlpwoCOkLg2UuIiQo6MM4xRIG1CWYwyTGKH9O3TrpmxPu2FZyzVNp3i0huRUsMuaQLKiwiL0zQZT6SzYH/zTqWnuNuI/lbm5RHLMSD2L90k8786UQtHDyeyBodqCiUjqrMzl0R2Rdxc+1IVJ4eQOIG7FI8I21I56bMmNbGsXfTWlPE3mSlYsbez3ATv4pY0YOPnOKdB7aBkHJWMi8Ni+TwbdR7b2ME+zfMYZZyhgip5p3jEE56VlnKr3Cn3n6lKLtNs4ttSHj4AVeeYiw==</latexit>
xe
t0
1
<latexit sha1_base64="peLc/YLjQkH25LZk+ozOUf5PCUc=">AAAC2nicjVHLSsNAFD2Nr1pfUXHlJlhEVyURUZcFN66kgn1AW0sSp3YwL5KJWEI37sStP+BWP0j8A/0L74wR1CI6IcmZc+85M/deJ/J4IkzzpaBNTE5NzxRnS3PzC4tL+vJKIwnT2GV1N/TCuOXYCfN4wOqCC4+1opjZvuOxpnN5KOPNKxYnPAxOxTBiXd++CHifu7YgqqevdXxbDJx+dj3qZWKrx0dnGRv19LJZMdUyxoGVgzLyVQv1Z3RwjhAuUvhgCCAIe7CR0NOGBRMRcV1kxMWEuIozjFAibUpZjDJsYi/pe0G7ds4GtJeeiVK7dIpHb0xKA5ukCSkvJixPM1Q8Vc6S/c07U57ybkP6O7mXT6zAgNi/dJ+Z/9XJWgT6OFA1cKopUoyszs1dUtUVeXPjS1WCHCLiJD6neEzYVcrPPhtKk6jaZW9tFX9VmZKVezfPTfEmb0kDtn6Ocxw0dirWXsU62S1Xj/NRF7GODWzTPPdRxRFqqJN3hgc84knraDfarXb3kaoVcs0qvi3t/h3b/5jD</latexit>
xe
t0
i
<latexit sha1_base64="hPRKb+PdNi2Rxsoy7tGnMUuUCT4=">AAAC2nicjVHLSsNAFD2Nr1pfUXHlJlhEVyURUZcFN66kgn1AW0uSTtvQvEgmYgnduBO3/oBb/SDxD/QvvDOmoBbRCUnOnHvPmbn3WqHrxFzXX3PKzOzc/EJ+sbC0vLK6pq5v1OIgiWxWtQM3iBqWGTPX8VmVO9xljTBipme5rG4NT0W8fs2i2An8Sz4KWdsz+77Tc2yTE9VRt1qeyQdWL70Zd1K+1/HHVykbd9SiXtLl0qaBkYEislUJ1Be00EUAGwk8MPjghF2YiOlpwoCOkLg2UuIiQo6MM4xRIG1CWYwyTGKH9O3TrpmxPu2FZyzVNp3i0huRUsMuaQLKiwiL0zQZT6SzYH/zTqWnuNuI/lbm5RHLMSD2L90k8786UQtHDyeyBodqCiUjqrMzl0R2Rdxc+1IVJ4eQOIG7FI8I21I56bMmNbGsXfTWlPE3mSlYsbez3ATv4pY0YOPnOKdB7aBkHJWMi8Ni+TwbdR7b2ME+zfMYZZyhgip5p3jEE56VlnKr3Cn3n6lKLtNs4ttSHj4A5/iYyA==</latexit>
xe
t0
n
<latexit sha1_base64="En2m+2cSGgdXIItWrBuzbpwcPy0=">AAAC2nicjVHLSsNAFD2Nr1pfUXHlJlhEVyURUZcFN66kgn1AW0OSTttgXiQToYRu3Ilbf8CtfpD4B/oX3hlTUIvohCRnzr3nzNx77chzE67rrwVlZnZufqG4WFpaXlldU9c3GkmYxg6rO6EXxi3bSpjnBqzOXe6xVhQzy7c91rSvT0W8ecPixA2DSz6KWNe3BoHbdx2LE2WqWx3f4kO7nw3HZsb3zGB8lbGxqZb1ii6XNg2MHJSRr1qovqCDHkI4SOGDIQAn7MFCQk8bBnRExHWRERcTcmWcYYwSaVPKYpRhEXtN3wHt2jkb0F54JlLt0CkevTEpNeySJqS8mLA4TZPxVDoL9jfvTHqKu43ob+dePrEcQ2L/0k0y/6sTtXD0cSJrcKmmSDKiOid3SWVXxM21L1VxcoiIE7hH8ZiwI5WTPmtSk8jaRW8tGX+TmYIVeyfPTfEubkkDNn6Ocxo0DirGUcW4OCxXz/NRF7GNHezTPI9RxRlqqJN3hkc84VnpKLfKnXL/maoUcs0mvi3l4QPBOJi4</latexit>
he
t0
n
<latexit sha1_base64="+Dce+D50b1bv3QBUkfvh5WM0fug=">AAAC2nicjVHLSsNAFD2Nr1pfUXHlJlhEVyURUZcFN66kgn1AW0OSTttgXiQToYRu3Ilbf8CtfpD4B/oX3hlTUIvohCRnzr3nzNx77chzE67rrwVlZnZufqG4WFpaXlldU9c3GkmYxg6rO6EXxi3bSpjnBqzOXe6xVhQzy7c91rSvT0W8ecPixA2DSz6KWNe3BoHbdx2LE2WqWx3f4kO7nw3HZsb3TGN8lbGxqZb1ii6XNg2MHJSRr1qovqCDHkI4SOGDIQAn7MFCQk8bBnRExHWRERcTcmWcYYwSaVPKYpRhEXtN3wHt2jkb0F54JlLt0CkevTEpNeySJqS8mLA4TZPxVDoL9jfvTHqKu43ob+dePrEcQ2L/0k0y/6sTtXD0cSJrcKmmSDKiOid3SWVXxM21L1VxcoiIE7hH8ZiwI5WTPmtSk8jaRW8tGX+TmYIVeyfPTfEubkkDNn6Ocxo0DirGUcW4OCxXz/NRF7GNHezTPI9RxRlqqJN3hkc84VnpKLfKnXL/maoUcs0mvi3l4QMvJ5h7</latexit>
he
t0
1
<latexit sha1_base64="6t/G0F8v0h9HSC04hg0z1fu9hSs=">AAAC2nicjVHLSsNAFD2Nr1pfVXHlJlhEVyURUZcFN66kgn1AW0uSTtvBvEgmQgnduBO3/oBb/SDxD/QvvDOmoBbRCUnOnHvPmbn32qHLY2EYrzltZnZufiG/WFhaXlldK65v1OMgiRxWcwI3iJq2FTOX+6wmuHBZM4yY5dkua9jXpzLeuGFRzAP/UoxC1vGsgc/73LEEUd3iVtuzxNDup8NxNxV7XT6+Stm4WywZZUMtfRqYGSghW9Wg+II2egjgIIEHBh+CsAsLMT0tmDAQEtdBSlxEiKs4wxgF0iaUxSjDIvaavgPatTLWp730jJXaoVNceiNS6tglTUB5EWF5mq7iiXKW7G/eqfKUdxvR3868PGIFhsT+pZtk/lcnaxHo40TVwKmmUDGyOidzSVRX5M31L1UJcgiJk7hH8Yiwo5STPutKE6vaZW8tFX9TmZKVeyfLTfAub0kDNn+OcxrUD8rmUdm8OCxVzrNR57GNHezTPI9RwRmqqJF3ikc84Vlra7fanXb/marlMs0mvi3t4QO1P5iz</latexit>
he
t0
i
<latexit sha1_base64="zBJ/EyuqftiEizu+2BxUM1pCPvY=">AAAC2HicjVHLSsNAFD3Gd31Fu3QTLEJdWBIRdVlw41KhVdGWMkmn7WBeJpNCKQV34tYfcKtfJP6B/oV3xghqEZ2Q5My595yZe68b+yKVtv0yYUxOTc/Mzs0XFhaXllfM1bXTNMoSj9e9yI+Sc5el3Bchr0shfX4eJ5wFrs/P3KtDFT/r8yQVUViTg5g3A9YNRUd4TBLVMouNgMme2xn2R2XZut6WLbHVMkt2xdbLGgdODkrI13FkPqOBNiJ4yBCAI4Qk7IMhpecSDmzExDUxJC4hJHScY4QCaTPK4pTBiL2ib5d2lzkb0l55plrt0Sk+vQkpLWySJqK8hLA6zdLxTDsr9jfvofZUdxvQ3829AmIlesT+pfvM/K9O1SLRwYGuQVBNsWZUdV7ukumuqJtbX6qS5BATp3Cb4glhTys/+2xpTaprV71lOv6qMxWr9l6em+FN3ZIG7Pwc5zg43ak4exXnZLdUreWjnsM6NlCmee6jiiMco07eAzzgEU/GhXFj3Bp3H6nGRK4p4tsy7t8BAFCXPA==</latexit>
v(tqti)
<latexit sha1_base64="XQDfW3suGBqMbPRWBKeL5dY3kEE=">AAAC1XicjVHLSsNAFD2Nr1pfUZdugkVwVRIRdVlw40oq2KbQaknSaRuaF8mkUEJ24tYfcKu/JP6B/oV3xhTUIjohyZlz7zkz91478tyE6/prSVlYXFpeKa9W1tY3NrfU7Z1WEqaxw5pO6IVx27YS5rkBa3KXe6wdxczybY+Z9vhcxM0JixM3DK75NGI3vjUM3IHrWJyonqp2fYuP7EFm5j3jNvPynlrVa7pc2jwwClBFsRqh+oIu+gjhIIUPhgCcsAcLCT0dGNAREXeDjLiYkCvjDDkqpE0pi1GGReyYvkPadQo2oL3wTKTaoVM8emNSajggTUh5MWFxmibjqXQW7G/emfQUd5vS3y68fGI5RsT+pZtl/lcnauEY4EzW4FJNkWREdU7hksquiJtrX6ri5BARJ3Cf4jFhRypnfdakJpG1i95aMv4mMwUr9k6Rm+Jd3JIGbPwc5zxoHdWMk5pxdVytXxajLmMP+zikeZ6ijgs00CTvCR7xhGfFVHLlTrn/TFVKhWYX35by8AGVtJZN</latexit>
Wl
1
<latexit sha1_base64="RHfiG4pMEVZWPrBkGk/bFeiUbvk=">AAAC1XicjVHLSsNAFD2Nr1pfUZdugkVwVZIi6rLgxpVUsE2hrSVJp21oXiSTQgndiVt/wK3+kvgH+hfeGVNQi+iEJGfOvefM3HvtyHMTruuvBWVpeWV1rbhe2tjc2t5Rd/eaSZjGDms4oRfGLdtKmOcGrMFd7rFWFDPLtz1m2uMLETcnLE7cMLjh04h1fWsYuAPXsThRPVXt+BYf2YPMnPWqt5k366llvaLLpS0CIwdl5Kseqi/ooI8QDlL4YAjACXuwkNDThgEdEXFdZMTFhFwZZ5ihRNqUshhlWMSO6TukXTtnA9oLz0SqHTrFozcmpYYj0oSUFxMWp2kynkpnwf7mnUlPcbcp/e3cyyeWY0TsX7p55n91ohaOAc5lDS7VFElGVOfkLqnsiri59qUqTg4RcQL3KR4TdqRy3mdNahJZu+itJeNvMlOwYu/kuSnexS1pwMbPcS6CZrVinFaM65Ny7SofdREHOMQxzfMMNVyijgZ5T/CIJzwrpjJT7pT7z1SlkGv28W0pDx+YGJZO</latexit>
Wl
2
<latexit sha1_base64="Fa+Q4e5BUYNrOVWMNLJf8KPGQ7s=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVkQwZVWsA+0RZJ02obmxWQilFq3/oBb/S3xD/QvvDNOQS2iE5KcOfeeM3PvdZPAT4VlveaMmdm5+YX8YmFpeWV1rbi+UU/jjHus5sVBzJuuk7LAj1hN+CJgzYQzJ3QD1nAHxzLeuGU89ePoUgwT1g6dXuR3fc8RRF21Qkf03e7oZHxTLFllSy1zGtgalKBXNS6+oIUOYnjIEIIhgiAcwEFKzzVsWEiIa2NEHCfkqzjDGAXSZpTFKMMhdkDfHu2uNRvRXnqmSu3RKQG9nJQmdkgTUx4nLE8zVTxTzpL9zXukPOXdhvR3tVdIrECf2L90k8z/6mQtAl0cqRp8qilRjKzO0y6Z6oq8ufmlKkEOCXESdyjOCXtKOemzqTSpql321lHxN5UpWbn3dG6Gd3lLGrD9c5zToL5Xtg/K9sV+qXKmR53HFraxS/M8RAWnqKJG3hEe8YRn49zIjDvj/jPVyGnNJr4t4+EDVG6TfA==</latexit>
E
<latexit sha1_base64="Fa+Q4e5BUYNrOVWMNLJf8KPGQ7s=">AAACzXicjVHLSsNAFD2Nr1pfVZdugkVwVRIRdVkQwZVWsA+0RZJ02obmxWQilFq3/oBb/S3xD/QvvDNOQS2iE5KcOfeeM3PvdZPAT4VlveaMmdm5+YX8YmFpeWV1rbi+UU/jjHus5sVBzJuuk7LAj1hN+CJgzYQzJ3QD1nAHxzLeuGU89ePoUgwT1g6dXuR3fc8RRF21Qkf03e7oZHxTLFllSy1zGtgalKBXNS6+oIUOYnjIEIIhgiAcwEFKzzVsWEiIa2NEHCfkqzjDGAXSZpTFKMMhdkDfHu2uNRvRXnqmSu3RKQG9nJQmdkgTUx4nLE8zVTxTzpL9zXukPOXdhvR3tVdIrECf2L90k8z/6mQtAl0cqRp8qilRjKzO0y6Z6oq8ufmlKkEOCXESdyjOCXtKOemzqTSpql321lHxN5UpWbn3dG6Gd3lLGrD9c5zToL5Xtg/K9sV+qXKmR53HFraxS/M8RAWnqKJG3hEe8YRn49zIjDvj/jPVyGnNJr4t4+EDVG6TfA==</latexit>
E
TKG
Candidate-related Historical Structure
<latexit sha1_base64="q5B6DDlUhayRGnvob6UHgPZZAyM=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvoqSQi6rHgxZNUsB/QpmWz3bRLN5uwO1FKyP/w4kERr/4Xb/4bt20O2vpg4PHeDDPz/FhwjY7zbRVWVtfWN4qbpa3tnd298v5BU0eJoqxBIxGptk80E1yyBnIUrB0rRkJfsJY/vpn6rUemNI/kA05i5oVkKHnAKUEj9dJh1k/xtO9mvZRl/XLFqToz2MvEzUkFctT75a/uIKJJyCRSQbTuuE6MXkoUcipYVuommsWEjsmQdQyVJGTaS2dXZ/aJUQZ2EClTEu2Z+nsiJaHWk9A3nSHBkV70puJ/XifB4NpLuYwTZJLOFwWJsDGypxHYA64YRTExhFDFza02HRFFKJqgSiYEd/HlZdI8r7qXVff+olK7y+MowhEcwxm4cAU1uIU6NICCgmd4hTfryXqx3q2PeWvBymcO4Q+szx+755K0</latexit>
ge
t0
1
<latexit sha1_base64="fRxyTFS/JH/jLtCv2zltrc1qVG8=">AAAB9XicbVBNS8NAEN3Ur1q/qh69BIvoqSQi6rHgxZNUsB/QpmWznbRLN5uwO1FKyP/w4kERr/4Xb/4bt20O2vpg4PHeDDPz/FhwjY7zbRVWVtfWN4qbpa3tnd298v5BU0eJYtBgkYhU26caBJfQQI4C2rECGvoCWv74Zuq3HkFpHskHnMTghXQoecAZRSP10mHWT/G0L7NeClm/XHGqzgz2MnFzUiE56v3yV3cQsSQEiUxQrTuuE6OXUoWcCchK3URDTNmYDqFjqKQhaC+dXZ3ZJ0YZ2EGkTEm0Z+rviZSGWk9C33SGFEd60ZuK/3mdBINrL+UyThAkmy8KEmFjZE8jsAdcAUMxMYQyxc2tNhtRRRmaoEomBHfx5WXSPK+6l1X3/qJSu8vjKJIjckzOiEuuSI3ckjppEEYUeSav5M16sl6sd+tj3lqw8plD8gfW5w8Zm5Lx</latexit>
ge
t0
n
<latexit sha1_base64="vMQRN/ZiM0/FQgcfRUZ9HsULklA=">AAAB9XicbVBNS8NAEJ3Ur1q/qh69BIvoqSQi6rHgxZNUsB/QpmWz3bRLN5uwO1FKyP/w4kERr/4Xb/4bt20O2vpg4PHeDDPz/FhwjY7zbRVWVtfWN4qbpa3tnd298v5BU0eJoqxBIxGptk80E1yyBnIUrB0rRkJfsJY/vpn6rUemNI/kA05i5oVkKHnAKUEj9dJh1k/xtM+zXsqyfrniVJ0Z7GXi5qQCOer98ld3ENEkZBKpIFp3XCdGLyUKORUsK3UTzWJCx2TIOoZKEjLtpbOrM/vEKAM7iJQpifZM/T2RklDrSeibzpDgSC96U/E/r5NgcO2lXMYJMknni4JE2BjZ0wjsAVeMopgYQqji5labjogiFE1QJROCu/jyMmmeV93Lqnt/Uand5XEU4QiO4QxcuIIa3EIdGkBBwTO8wpv1ZL1Y79bHvLVg5TOH8AfW5w8R7pLs</latexit>
ge
t0
i
<latexit sha1_base64="50un2vwjK3axOwS9Eo7u0c3BYrc=">AAAC2XicjVHLSsNAFD3GV33Xx85NsIi6sCQi6lJw40oqWCu0UiZx2g7Ny2QiaHHhTtz6A271h8Q/0L/wzjiCWkQnJDlz7j1n5t7rJYHIpOO8DFiDQ8Mjo4Wx8YnJqemZ4uzccRbnqc+rfhzE6YnHMh6IiFelkAE/SVLOQi/gNa+7p+K1C55mIo6O5GXCT0PWjkRL+EwS1SwuNEImO16rd3G9Kpvn63KlKdaaxZJTdvSy+4FrQAlmVeLiMxo4QwwfOUJwRJCEAzBk9NThwkFC3Cl6xKWEhI5zXGOctDllccpgxHbp26Zd3bAR7ZVnptU+nRLQm5LSxjJpYspLCavTbB3PtbNif/PuaU91t0v6e8YrJFaiQ+xfus/M/+pULRIt7OgaBNWUaEZV5xuXXHdF3dz+UpUkh4Q4hc8onhL2tfKzz7bWZLp21Vum4686U7Fq75vcHG/qljRg9+c4+8HxRtndKruHm6XdAzPqAhaxhFWa5zZ2sY8KquR9hQc84smqWzfWrXX3kWoNGM08vi3r/h2H45dn</latexit>
v(tqt0
i)
<latexit sha1_base64="52zVWba+SB4zrSJc273aClPsxQo=">AAACy3icjVHLSsNAFD2Nr1pfVZdugkV0Y0lE1GXBjRulgn1ALSVJp3VoXk4mQq0u/QG3+l/iH+hfeGdMQS2iE5KcOfecO3PvdWOfJ9KyXnPG1PTM7Fx+vrCwuLS8UlxdqydRKjxW8yI/Ek3XSZjPQ1aTXPqsGQvmBK7PGu7gWMUbN0wkPAov5DBm7cDph7zHPUcS1ZSd61253eGdYskqW3qZk8DOQAnZqkbFF1yiiwgeUgRgCCEJ+3CQ0NOCDQsxcW2MiBOEuI4z3KNA3pRUjBQOsQP69mnXytiQ9ipnot0eneLTK8hpYos8EekEYXWaqeOpzqzY33KPdE51tyH93SxXQKzEFbF/+cbK//pULRI9HOkaONUUa0ZV52VZUt0VdXPzS1WSMsTEKdyluCDsaee4z6b2JLp21VtHx9+0UrFq72XaFO/qljRg++c4J0F9r2wflO3z/VLlLBt1HhvYxA7N8xAVnKCKmp7jI57wbJwaiXFr3H1KjVzmWce3ZTx8AB5bkjE=</latexit>
tqt0
i
<latexit sha1_base64="ZEQckflGpWESGyszPQq2g41iVW4=">AAAC0HicjVHLSsNAFD2Nr1pfVZdugkV0VZIi6rLgxpVUsQ9oS0mm0zY0L5OJWEoRt/6AW/0q8Q/0L7wzpqAW0QlJzpx7z5m599qh68TCMF4z2tz8wuJSdjm3srq2vpHf3KrFQRIxXmWBG0QN24q56/i8Khzh8kYYccuzXV63h6cyXr/hUewE/pUYhbztWX3f6TnMEkS1W54lBnZvzCf7nVInXzCKhlr6LDBTUEC6KkH+BS10EYAhgQcOH4KwCwsxPU2YMBAS18aYuIiQo+IcE+RIm1AWpwyL2CF9+7RrpqxPe+kZKzWjU1x6I1Lq2CNNQHkRYXmaruKJcpbsb95j5SnvNqK/nXp5xAoMiP1LN838r07WItDDiarBoZpCxcjqWOqSqK7Im+tfqhLkEBIncZfiEWGmlNM+60oTq9plby0Vf1OZkpV7luYmeJe3pAGbP8c5C2qlonlUNC8OC+XzdNRZ7GAXBzTPY5Rxhgqq5H2NRzzhWbvUbrU77f4zVcukmm18W9rDB9RWlHI=</latexit>
e0
2
<latexit sha1_base64="ShVXSGTUVU8lCQRgczeUexCwvHk=">AAAC0HicjVHLSsNAFD2Nr/quunQTLKKrkoioS8GNK6liH9CWkkynbWheTiailCJu/QG3+lXiH+hfeGdMQS2iE5KcOfeeM3PvdWPfS6RlveaMqemZ2bn8/MLi0vLKamFtvZpEqWC8wiI/EnXXSbjvhbwiPenzeiy4E7g+r7mDExWvXXOReFF4KW9j3gqcXuh1PeZIolrNwJF9tzvko5223S4UrZKllzkJ7AwUka1yVHhBEx1EYEgRgCOEJOzDQUJPAzYsxMS1MCROEPJ0nGOEBdKmlMUpwyF2QN8e7RoZG9JeeSZazegUn15BShPbpIkoTxBWp5k6nmpnxf7mPdSe6m639Hczr4BYiT6xf+nGmf/VqVokujjSNXhUU6wZVR3LXFLdFXVz80tVkhxi4hTuUFwQZlo57rOpNYmuXfXW0fE3nalYtWdZbop3dUsasP1znJOguleyD0r2+X7x+CwbdR6b2MIuzfMQxzhFGRXyvsIjnvBsXBg3xp1x/5lq5DLNBr4t4+ED0faUcQ==</latexit>
e0
1
<latexit sha1_base64="hEpvD7xwnjzFH5C7cI+KwiWYpZI=">AAAC0HicjVHLSsNAFD2Nr1pfVZdugkV0VRIVdVlw40qq2Ae0pSTTaRual8lELKWIW3/ArX6V+Af6F94ZU1CL6IQkZ86958zce+3QdWJhGK8ZbWZ2bn4hu5hbWl5ZXcuvb1TjIIkYr7DADaK6bcXcdXxeEY5weT2MuOXZLq/Zg1MZr93wKHYC/0oMQ97yrJ7vdB1mCaJaTc8Sfbs74uPd9kE7XzCKhlr6NDBTUEC6ykH+BU10EIAhgQcOH4KwCwsxPQ2YMBAS18KIuIiQo+IcY+RIm1AWpwyL2AF9e7RrpKxPe+kZKzWjU1x6I1Lq2CFNQHkRYXmaruKJcpbsb94j5SnvNqS/nXp5xAr0if1LN8n8r07WItDFiarBoZpCxcjqWOqSqK7Im+tfqhLkEBIncYfiEWGmlJM+60oTq9plby0Vf1OZkpV7luYmeJe3pAGbP8c5Dar7RfOoaF4cFkrn6aiz2MI29miexyjhDGVUyPsaj3jCs3ap3Wp32v1nqpZJNZv4trSHD9a2lHM=</latexit>
e0
3
Figure 1: An illustrative diagram of the proposed HiSMatch model.
advantages of both kinds of models.
3 Problem Formulation
A TKG
G={G0, ..., Gt, ..., GT}
is a sequence
of KGs, each of which contains facts occurred at
timestamp
t
, i.e.,
Gt={E,R,Ft}
, where
E
is
the set of entities,
R
is the set of relations and
Ft
is the set of facts that occurred at
t
. Each
fact is a quadruple
(es, r, eo, t)
, where
es, eo∈ E
and
r∈ R
. For each fact in TKG, we add the
inverse quadruple
(eo, r1, es, t)
into TKG, cor-
respondingly. The TKG reasoning task aims to
predict the missing object via answering a query
q= (eq, rq,?, tq)
with the historical KGs given.
Note that, when predicting the missing subject of a
query
q={?, rq, eq, tq}
, we can convert the query
into q={eq, r1
q,?, tq}.
4 The HiSMatch model
HiSMatch aims to captures the semantic similar-
ity contained in the query-related and candidate-
related historical structures. For each query time,
it first embeds the background knowledge into the
initial entity representations. With the initial rep-
resentations as input, it maps the semantic infor-
mation in these two historical structures into the
vectorized representations of structures. Based on
the structure representations, matching scores are
calculated.
Thus, as shown in Figure 1, HiSMatch consists
of four parts: the query structure encoder, the can-
didate structure encoder, the background knowl-
edge encoder, and the matching function. First,
two kinds of historical structures and a background
knowledge graph are derived from the TKG. Then,
the background knowledge encoder gets the rep-
resentations of the entities with the background
knowledge graph as input (Section 4.3). With
the learned representations as input, two structure
encoders use three components to integrate three
kinds of semantic information into the represen-
tations of query-related structure and candidate-
related structure, respectively (Section 4.1 and
4.2). Finally, the matching function calculates the
scores between the query and candidates based
on the representations of their historical structures
(Section 4.4).
4.1 Query Structure Encoder
The query-related historical structure should re-
flect the behavioral trends of the query. Motivated
by this, for a query
q= (eq, rq,?, tq)
, the query-
related historical structure consists of the latest his-
torical facts with the same subject
eq
and relation
rq
. These facts co-occuring at the same timestamp
t
form a subgraph
gq
t
centered on
eq
. Then, we
obtain a subgraph sequence
{gq
t1, ..., gq
ti, ..., gq
tm}
,
where
t1< ... < ti< ... < tm< tq
and
m
is the
maximum length of the sequence.
Three kinds of information are vital in the above
historical structure, namely, the structure semantic
information of each subgraph, the time numerical
information of each subgraph, and the temporal or-
der information across subgraphs. To model these
three kinds of information, we design three compo-
摘要:

HiSMatch:HistoricalStructureMatchingbasedTemporalKnowledgeGraphReasoningZixuanLi1,2,3,ZhongniHou1,2,SaipingGuan1,2y,XiaolongJin1,2,WeihuaPeng3,LongBai1,2,YajuanLyu3,WeiLi3,JiafengGuo1,2,XueqiCheng1,21SchoolofComputerScienceandTechnology,UniversityofChineseAcademyofSciences;2CASKeyLaboratoryofNetwor...

展开>> 收起<<
HiSMatch Historical Structure Matching based Temporal Knowledge Graph Reasoning Zixuan Li123 Zhongni Hou12 Saiping Guan12y Xiaolong Jin12 Weihua Peng3.pdf

共11页,预览3页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:11 页 大小:1.58MB 格式:PDF 时间:2025-05-06

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 11
客服
关注