K0production in AuAu collisions atpsNN 7.7 11.5 14.5 19.6 27 and 39 GeV from RHIC beam energy scan M. S. Abdallah1B. E. Aboona2J. Adam3L. Adamczyk4J. R. Adams5J. K. Adkins6

2025-05-06 0 0 2.93MB 17 页 10玖币
侵权投诉
K0production in Au+Au collisions at sNN = 7.7, 11.5, 14.5, 19.6, 27 and
39 GeV from RHIC beam energy scan
M. S. Abdallah,1B. E. Aboona,2J. Adam,3L. Adamczyk,4J. R. Adams,5J. K. Adkins,6
I. Aggarwal,7M. M. Aggarwal,7Z. Ahammed,8D. M. Anderson,2E. C. Aschenauer,9J. Atchison,10
V. Bairathi,11 W. Baker,12 J. G. Ball Cap,13 K. Barish,12 R. Bellwied,13 P. Bhagat,14 A. Bhasin,14
S. Bhatta,15 J. Bielcik,3J. Bielcikova,16 J. D. Brandenburg,9X. Z. Cai,17 H. Caines,18
M. Calder´on de la Barca S´anchez,19 D. Cebra,19 I. Chakaberia,20 P. Chaloupka,3B. K. Chan,21
Z. Chang,22 A. Chatterjee,23 D. Chen,12 J. Chen,24 J. H. Chen,25 X. Chen,26 Z. Chen,24 J. Cheng,27
Y. Cheng,21 S. Choudhury,25 W. Christie,9X. Chu,9H. J. Crawford,28 M. Csan´ad,29 G. Dale-Gau,30
M. Daugherity,10 I. M. Deppner,31 A. Dhamija,7L. Di Carlo,32 L. Didenko,9P. Dixit,33 X. Dong,20
J. L. Drachenberg,10 E. Duckworth,34 J. C. Dunlop,9J. Engelage,28 G. Eppley,35 S. Esumi,36
O. Evdokimov,30 A. Ewigleben,37 O. Eyser,9R. Fatemi,6F. M. Fawzi,1S. Fazio,38 C. J. Feng,39 Y. Feng,40
E. Finch,41 Y. Fisyak,9C. Fu,42 C. A. Gagliardi,2T. Galatyuk,43 F. Geurts,35 N. Ghimire,44 A. Gibson,45
K. Gopal,46 X. Gou,24 D. Grosnick,45 A. Gupta,14 W. Guryn,9A. Hamed,1Y. Han,35 S. Harabasz,43
M. D. Harasty,19 J. W. Harris,18 H. Harrison,6S. He,42 W. He,25 X. H. He,47 Y. He,24 S. Heppelmann,19
N. Herrmann,31 E. Hoffman,13 L. Holub,3C. Hu,47 Q. Hu,47 Y. Hu,20 H. Huang,39 H. Z. Huang,21
S. L. Huang,15 T. Huang,30 X. Huang,27 Y. Huang,27 T. J. Humanic,5D. Isenhower,10 M. Isshiki,36
W. W. Jacobs,22 C. Jena,46 A. Jentsch,9Y. Ji,20 J. Jia,9, 15 K. Jiang,26 C. Jin,35 X. Ju,26 E. G. Judd,28
S. Kabana,11 M. L. Kabir,12 S. Kagamaster,37 D. Kalinkin,22, 9 K. Kang,27 D. Kapukchyan,12 K. Kauder,9
H. W. Ke,9D. Keane,34 M. Kelsey,32 Y. V. Khyzhniak,5D. P. Kiko la,23 B. Kimelman,19 D. Kincses,29
I. Kisel,48 A. Kiselev,9A. G. Knospe,37 H. S. Ko,20 L. K. Kosarzewski,3L. Kramarik,3L. Kumar,7
S. Kumar,47 R. Kunnawalkam Elayavalli,18 J. H. Kwasizur,22 R. Lacey,15 S. Lan,42 J. M. Landgraf,9
J. Lauret,9A. Lebedev,9J. H. Lee,9Y. H. Leung,31 N. Lewis,9C. Li,24 C. Li,26 W. Li,17 W. Li,35 X. Li,26
Y. Li,26 Y. Li,27 Z. Li,26 X. Liang,12 Y. Liang,34 R. Licenik,16, 3 T. Lin,24 Y. Lin,42 M. A. Lisa,5F. Liu,42
H. Liu,22 H. Liu,42 T. Liu,18 X. Liu,5Y. Liu,2T. Ljubicic,9W. J. Llope,32 R. S. Longacre,9E. Loyd,12
T. Lu,47 N. S. Lukow,44 X. F. Luo,42 L. Ma,25 R. Ma,9Y. G. Ma,25 N. Magdy,15 D. Mallick,49
S. Margetis,34 C. Markert,50 H. S. Matis,20 J. A. Mazer,51 G. McNamara,32 S. Mioduszewski,2
B. Mohanty,49 M. M. Mondal,49 I. Mooney,18 A. Mukherjee,29 M. I. Nagy,29 A. S. Nain,7J. D. Nam,44
Md. Nasim,33 K. Nayak,46 D. Neff,21 J. M. Nelson,28 D. B. Nemes,18 M. Nie,24 T. Niida,36 R. Nishitani,36
T. Nonaka,36 A. S. Nunes,9G. Odyniec,20 A. Ogawa,9S. Oh,20 K. Okubo,36 B. S. Page,9R. Pak,9J. Pan,2
A. Pandav,49 A. K. Pandey,36 T. Pani,51 A. Paul,12 B. Pawlik,52 D. Pawlowska,23 C. Perkins,28 J. Pluta,23
B. R. Pokhrel,44 J. Porter,20 M. Posik,44 T. Protzman,37 V. Prozorova,3N. K. Pruthi,7M. Przybycien,4
J. Putschke,32 Z. Qin,27 H. Qiu,47 A. Quintero,44 C. Racz,12 S. K. Radhakrishnan,34 N. Raha,32
R. L. Ray,50 R. Reed,37 H. G. Ritter,20 M. Robotkova,16, 3 J. L. Romero,19 D. Roy,51 P. Roy Chowdhury,23
L. Ruan,9A. K. Sahoo,33 N. R. Sahoo,24 H. Sako,36 S. Salur,51 S. Sato,36 W. B. Schmidke,9N. Schmitz,53
F-J. Seck,43 J. Seger,54 R. Seto,12 P. Seyboth,53 N. Shah,55 P. V. Shanmuganathan,9M. Shao,26
T. Shao,25 R. Sharma,46 A. I. Sheikh,34 D. Y. Shen,25 K. Shen,26 S. S. Shi,42 Y. Shi,24 Q. Y. Shou,25
E. P. Sichtermann,20 R. Sikora,4J. Singh,7S. Singha,47 P. Sinha,46 M. J. Skoby,56, 40 N. Smirnov,18
Y. S¨ohngen,31 W. Solyst,22 Y. Song,18 B. Srivastava,40 T. D. S. Stanislaus,45 M. Stefaniak,23
D. J. Stewart,32 B. Stringfellow,40 A. A. P. Suaide,57 M. Sumbera,16 C. Sun,15 X. M. Sun,42 X. Sun,47
Y. Sun,26 Y. Sun,58 B. Surrow,44 Z. W. Sweger,19 P. Szymanski,23 A. H. Tang,9Z. Tang,26
T. Tarnowsky,59 J. H. Thomas,20 A. R. Timmins,13 D. Tlusty,54 T. Todoroki,36 C. A. Tomkiel,37
S. Trentalange,21 R. E. Tribble,2P. Tribedy,9S. K. Tripathy,29 T. Truhlar,3B. A. Trzeciak,3
O. D. Tsai,21, 9 C. Y. Tsang,34, 9 Z. Tu,9T. Ullrich,9D. G. Underwood,60, 45 I. Upsal,35 G. Van Buren,9
J. Vanek,9I. Vassiliev,48 V. Verkest,32 F. Videbæk,9S. A. Voloshin,32 F. Wang,40 G. Wang,21
J. S. Wang,58 P. Wang,26 X. Wang,24 Y. Wang,42 Y. Wang,27 Z. Wang,24 J. C. Webb,9P. C. Weidenkaff,31
G. D. Westfall,59 D. Wielanek,23 H. Wieman,20 G. Wilks,30 S. W. Wissink,22 R. Witt,61 J. Wu,42
J. Wu,47 X. Wu,21 Y. Wu,12 B. Xi,17 Z. G. Xiao,27 G. Xie,20 W. Xie,40 H. Xu,58 N. Xu,20 Q. H. Xu,24
Y. Xu,24 Z. Xu,9Z. Xu,21 G. Yan,24 Z. Yan,15 C. Yang,24 Q. Yang,24 S. Yang,62 Y. Yang,39 Z. Ye,35
Z. Ye,30 L. Yi,24 K. Yip,9Y. Yu,24 H. Zbroszczyk,23 W. Zha,26 C. Zhang,15 D. Zhang,42 J. Zhang,24
S. Zhang,26 S. Zhang,25 Y. Zhang,47 Y. Zhang,26 Y. Zhang,42 Z. J. Zhang,39 Z. Zhang,9Z. Zhang,30
F. Zhao,47 J. Zhao,25 M. Zhao,9C. Zhou,25 J. Zhou,26 Y. Zhou,42 X. Zhu,27 M. Zurek,60 and M. Zyzak48
arXiv:2210.02909v2 [nucl-ex] 5 Apr 2023
2
(STAR Collaboration)
1American University of Cairo, New Cairo 11835, New Cairo, Egypt
2Texas A&M University, College Station, Texas 77843
3Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic
4AGH University of Science and Technology, FPACS, Cracow 30-059, Poland
5Ohio State University, Columbus, Ohio 43210
6University of Kentucky, Lexington, Kentucky 40506-0055
7Panjab University, Chandigarh 160014, India
8Variable Energy Cyclotron Centre, Kolkata 700064, India
9Brookhaven National Laboratory, Upton, New York 11973
10Abilene Christian University, Abilene, Texas 79699
11Instituto de Alta Investigaci´on, Universidad de Tarapac´a, Arica 1000000, Chile
12University of California, Riverside, California 92521
13University of Houston, Houston, Texas 77204
14University of Jammu, Jammu 180001, India
15State University of New York, Stony Brook, New York 11794
16Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic
17Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
18Yale University, New Haven, Connecticut 06520
19University of California, Davis, California 95616
20Lawrence Berkeley National Laboratory, Berkeley, California 94720
21University of California, Los Angeles, California 90095
22Indiana University, Bloomington, Indiana 47408
23Warsaw University of Technology, Warsaw 00-661, Poland
24Shandong University, Qingdao, Shandong 266237
25Fudan University, Shanghai, 200433
26University of Science and Technology of China, Hefei, Anhui 230026
27Tsinghua University, Beijing 100084
28University of California, Berkeley, California 94720
29ELTE E¨otv¨os Lor´and University, Budapest, Hungary H-1117
30University of Illinois at Chicago, Chicago, Illinois 60607
31University of Heidelberg, Heidelberg 69120, Germany
32Wayne State University, Detroit, Michigan 48201
33Indian Institute of Science Education and Research (IISER), Berhampur 760010 , India
34Kent State University, Kent, Ohio 44242
35Rice University, Houston, Texas 77251
36University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
37Lehigh University, Bethlehem, Pennsylvania 18015
38University of Calabria & INFN-Cosenza, Italy
39National Cheng Kung University, Tainan 70101
40Purdue University, West Lafayette, Indiana 47907
41Southern Connecticut State University, New Haven, Connecticut 06515
42Central China Normal University, Wuhan, Hubei 430079
43Technische Universit¨at Darmstadt, Darmstadt 64289, Germany
44Temple University, Philadelphia, Pennsylvania 19122
45Valparaiso University, Valparaiso, Indiana 46383
46Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
47Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000
48Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany
49National Institute of Science Education and Research, HBNI, Jatni 752050, India
50University of Texas, Austin, Texas 78712
51Rutgers University, Piscataway, New Jersey 08854
52Institute of Nuclear Physics PAN, Cracow 31-342, Poland
53Max-Planck-Institut f¨ur Physik, Munich 80805, Germany
54Creighton University, Omaha, Nebraska 68178
55Indian Institute Technology, Patna, Bihar 801106, India
56Ball State University, Muncie, Indiana, 47306
57Universidade de S˜ao Paulo, ao Paulo, Brazil 05314-970
58Huzhou University, Huzhou, Zhejiang 313000
59Michigan State University, East Lansing, Michigan 48824
60Argonne National Laboratory, Argonne, Illinois 60439
61United States Naval Academy, Annapolis, Maryland 21402
3
62South China Normal University, Guangzhou, Guangdong 510631
(Dated: April 6, 2023)
We report the measurement of K0meson at midrapidity (|y|<1.0) in Au+Au collisions at
sNN = 7.7, 11.5, 14.5, 19.6, 27 and 39 GeV collected by the STAR experiment during the RHIC
beam energy scan (BES) program. The transverse momentum spectra, yield, and average transverse
momentum of K0are presented as functions of collision centrality and beam energy. The K0/K
yield ratios are presented for different collision centrality intervals and beam energies. The K0/K
ratio in heavy-ion collisions are observed to be smaller than that in small system collisions (e+e and
p+p). The K0/K ratio follows a similar centrality dependence to that observed in previous RHIC
and LHC measurements. The data favor the scenario of the dominance of hadronic rescattering over
regeneration for K0production in the hadronic phase of the medium.
PACS numbers: 25.75.Ld
I. INTRODUCTION
Resonances are very short-lived particles and
provide an excellent probe of properties of QCD
medium in heavy-ion collisions (HIC) [1]. They
decay through strong interactions within roughly
1023 seconds or a few fm/c which is of a simi-
lar order to the lifetime of the medium created in
heavy-ion collisions. Due to their short lifetime,
some resonances decay within the medium. Hence,
they are subjected to in-medium interactions. Dur-
ing the evolution of HIC, the chemical (CFO) and
kinetic (KFO) freeze-out temperatures play impor-
tant roles. At CFO, the inelastic interactions among
the constituents are expected to cease [2–7]. Af-
terward, the constituents can interact among them-
selves via elastic (or pseudo-elastic) interactions un-
til the KFO, when their mean free path increases
and all interactions cease. Between CFO and KFO,
there can be two competing effects, rescattering and
regeneration. The momentum of resonance daugh-
ters (e.g pions and kaons from K0) can be altered
due to the scattering with other hadrons present in
the medium. Thus the parent resonance (e.g. K0)
is not reconstructible using the re-scattered daugh-
ters. This may result in a reduced resonance yield.
On the other hand, resonances may be regenerated
via pseudo-elastic interactions (e.g. πK K0) un-
til KFO is reached. Such regeneration may result in
an increase of resonance yield. The K0regeneration
depends on the kaon-pion interaction cross section
(σKπ), the time scale allowed for this re-generation,
and the medium density. The rescattering depends
on resonance lifetime, daughter particle’s interaction
cross-section with the medium (e.g. σKπ, ππ, KK ),
the medium density, and the time scale between
CFO and KFO. The final resonance (e.g. K0) yield
is affected by the relative strength of these two com-
peting processes. Since the σππ is about a factor of
five larger than σKπ [8–10], one naively expects a loss
of K0signal due to rescattering over regeneration.
Furthermore, the mass peak position and width of
resonances may be modified due to in-medium ef-
fects and late stage rescattering.
Due to the short lifetime of about 4.16 fm/c, the
K0meson is one of the ideal candidates to probe
the hadronic phase of the medium between CFO and
KFO. If rescattering plays a dominant role, then one
naively expects a smaller resonance to non-resonance
particle yield ratio (e.g. K0/K) in central collisions
compared to that in peripheral and small system
(p+p) collisions. On the contrary, if regeneration is
dominant, the above ratio is expected to be larger in
central compared to peripheral (and small system)
collisions. In previous RHIC [11–15], SPS [16, 17],
and LHC [18–24] measurements, it is observed that
the K0/K ratio is indeed smaller in central heavy-
ion collisions than in peripheral, and elementary
(e.g. p+p) collisions. The observation indicates the
dominance of hadronic rescattering over regenera-
tion. Such an observation is also supported by sev-
eral transport model calculations [25–27]. The mea-
surement of K0in the Beam Energy Scan range
can provide information on the interactions in the
hadronic phase of the medium at these energies.
In this article, we report on the measurement of
K0mesons at midrapidity (|y|<1.0) using data
from Au+Au collisions at sNN = 7.7, 11.5, 14.5,
19.6, 27 and 39 GeV collected by the STAR experi-
ment during 2010-2014 in the 1st phase of the Beam
Energy Scan (called BES-I) program. The paper is
organized as follows: Section II briefly describes the
sub-detectors of STAR used in this analysis along
with the event and track selection criteria and the
data-analysis methods. The results for K0mesons,
which include transverse momentum (pT) spectra,
yield (dN/dy), average transverse momentum (hpTi)
and ratios to non-resonances are discussed in section
III. The results are summarized in Section IV.
4
II. EXPERIMENTAL DETAILS AND DATA
ANALYSIS
A. STAR detector
The details of the STAR detector system are dis-
cussed in [28]. The detector configuration during
2010 and 2011 are similar, while during 2014 the
Heavy Flavor Tracker [29] was installed inside the
TPC. Minimum-bias events are selected using the
scintillator-based Beam Beam Counter (BBC) detec-
tors. The BBCs are located on the two sides of the
beam pipe in the pseudo-rapidity range 3.3<|η|<
5.0. The Time Projection Chamber (TPC) [30] is the
main tracking detector in STAR and is used for track
reconstruction for the decay daughters of K0. The
TPC has an acceptance of ±1.0 in pseudo-rapidity
and 2πin azimuth. With the TPC, one can identify
particles in the low momentum range by utilizing en-
ergy loss (dE/dx) and momentum information. The
Time of Flight (TOF) [31, 32] detector can be used
to identify particles in the momentum region where
the TPC dE/dx bands for pions and kaons over-
lap. The TOF works on the principle of Multigap
Resistive Plate Chamber (MRPC) technology and
provides pseudorapidity coverage |η|<0.9 with full
2πazimuth.
B. Event selection
Minimum-bias events are selected using the co-
incidence between the BBC detectors [33]. The pri-
mary vertex of each event is reconstructed by finding
the best common point from which most of the pri-
mary tracks originate. The vertex position along
the beam direction (Vz) is required to be within
±50 cm for sNN 11.5 GeV and ±70 cm for
7.7 GeV in a coordinate system whose origin is at
the center of TPC. The vertex in radial direction
(Vr=qV2
x+V2
y) is required to be smaller than 2.0
cm for all energies except 14.5 GeV where the vertex
is not centered at (0, 0) in the xy plane and slightly
offset at (0.0, -0.89). Hence the Vris selected to be
Vr=pV2
x+ (Vy+ 0.89)2<1 cm for 14.5 GeV [34].
The Vrselection excludes events where the incoming
Au nuclei collide with the beam pipe. The above ver-
tex selection criteria also ensure uniform acceptance
within the ηrange (|η|<1.0) studied. A typical ver-
tex resolution 350 µm can be achieved using about
1000 tracks with a maximum 45 hit points in TPC
[35]. The number of good events selected after these
criteria are listed in Table I.
TABLE I: Au+Au collision datasets, vertex position Vz
and Vrselection, number of events analyzed.
Year Energy |VZ|(cm) Vr(cm) Events (M)
2010 7.7 GeV <70 <2 4.7
2010 11.5 GeV <50 <2 12.1
2014 14.5 GeV <50 <1 15.3
2011 19.6 GeV <50 <2 27.7
2011 27 GeV <50 <2 53.7
2010 39 GeV <50 <2 128.5
C. Centrality selection
The collision centrality is determined via a fit to
the charged particle distribution within |η|<0.5
in the TPC using a Glauber Monte Carlo simula-
tion [36]. The minimum bias triggered events are
divided into nine different intervals as 0 – 5%, 5 –
10%, 10 – 20%, 20 – 30%, 30 – 40%, 40 – 50%, 50 –
60%, 60 – 70% and 70 – 80%. The average number
of participant nucleons hNpartifor BES-I energies
are evaluated using a Glauber simulation and are
reported in [34, 37].
D. Track selection
Good quality tracks are selected by requiring at
least 15 hit points in the TPC. In order to re-
duce track splitting, the tracks are required to in-
clude more than 55% of the maximum number of
hits possible for their geometry. Particles are re-
quired to have transverse momentum greater than
0.15 GeV/c. To reduce contamination from sec-
ondary particles (e.g. weak decay contributions), the
distance of closest approach (DCA) to the primary
vertex is required to be smaller than 2 cm. Lastly,
to ensure uniform acceptance, tracks are required to
fall within ±1 in pseudo-rapidity.
E. Particle identification
Particle identification (PID) is carried out utiliz-
ing both the TPC and TOF detectors. The pion and
kaon candidates are identified using the energy loss
dE/dx of the particles inside the TPC. In the STAR
TPC, pions and kaons can be distinguished up to
about 0.7 GeV/cin momenta, while (anti-) protons
can be distinguished up to about 1.1 GeV/cin mo-
menta. Particle tracks in the TPC are characterized
by the Nσ variable, which is defined as:
摘要:

K0productioninAu+AucollisionsatpsNN=7.7,11.5,14.5,19.6,27and39GeVfromRHICbeamenergyscanM.S.Abdallah,1B.E.Aboona,2J.Adam,3L.Adamczyk,4J.R.Adams,5J.K.Adkins,6I.Aggarwal,7M.M.Aggarwal,7Z.Ahammed,8D.M.Anderson,2E.C.Aschenauer,9J.Atchison,10V.Bairathi,11W.Baker,12J.G.BallCap,13K.Barish,12R.Bellwied,13P....

展开>> 收起<<
K0production in AuAu collisions atpsNN 7.7 11.5 14.5 19.6 27 and 39 GeV from RHIC beam energy scan M. S. Abdallah1B. E. Aboona2J. Adam3L. Adamczyk4J. R. Adams5J. K. Adkins6.pdf

共17页,预览4页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:17 页 大小:2.93MB 格式:PDF 时间:2025-05-06

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 17
客服
关注