Metaplectic geometrical optics Nicolas Alexander Lopez A Dissertation

2025-05-02 0 0 5.14MB 203 页 10玖币
侵权投诉
Metaplectic geometrical optics
Nicolas Alexander Lopez
A Dissertation
Presented to the Faculty
of Princeton University
in Candidacy for the Degree
of Doctor of Philosophy
Recommended for Acceptance
by the Department of
Astrophysical Sciences
Program in Plasma Physics
Adviser: Ilya Y. Dodin
November 2022
arXiv:2210.03188v1 [physics.optics] 6 Oct 2022
©Copyright by Nicolas Alexander Lopez, 2022.
All Rights Reserved
Abstract
Ray optics is an intuitive and computationally efficient model for wave propagation through nonuni-
form media. It is therefore the standard choice for multiphysics simulations that involve wave physics
in some capacity, such as designing and analyzing nuclear fusion experiments. However, the under-
lying geometrical-optics (GO) approximation of ray optics breaks down at caustics such as cutoffs
and focal points, erroneously predicting the wave intensity to be infinite and thereby limiting the
predictive capabilities of these codes. Full-wave modeling can be used instead, but the added com-
putational cost brings its own set of tradeoffs. Developing cheaper, more efficient caustic remedies
has therefore been an active area of research for the past few decades.
In this thesis, I present a new ray-based approach called ‘metaplectic geometrical optics’ (MGO)
that can be applied to any linear wave equation. Instead of evolving waves in the usual x(coordinate)
or k(spectral) representation, MGO uses a mixed XAx+Bkrepresentation. By continuously
adjusting the matrix coefficients Aand Balong the rays via sequenced metaplectic transforms (MTs)
of the wavefield, corresponding to symplectic transformations of the ray phase space, one can ensure
that GO remains valid in the Xcoordinates without caustic singularities. The caustic-free result
is then mapped back onto the original xspace using metaplectic transforms, as demonstrated and
verified on a number of examples.
Besides outlining the basic theory of MGO, this thesis also presents specialized fast algorithms for
MGO. These algorithms focus on the MT, which is a unitary integral mapping used in MGO that can
be considered a generalization of the Fourier transform. First, a discrete representation of the MT is
developed that can be computed in linear time [O(Np) for Npsample points] when evaluated in the
near-identity limit; finite MTs can then be implemented as successive applications of K1 near-
identity MTs. Second, an algorithm based on Gauss–Freud quadrature is developed for efficiently
computing finite MTs along their steepest-descent curves, which may be useful in catastrophe-optics
applications beyond MGO. These algorithms lay the foundations for the development of an MGO-
based ray-tracing code.
iii
Contents
Abstract.............................................. iii
1 Introduction 1
1.1 Background......................................... 1
1.2 Outline ........................................... 4
1.3 Contributingpublications ................................. 6
2 Geometrical optics for scalar waves 7
2.1 Introduction......................................... 7
2.2 The geometrical-optics approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Caustics and catastrophes of geometrical optics . . . . . . . . . . . . . . . . . . . . . 13
2.4 Case study: caustics in paraxial propagation . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Cuspoidcaustics .................................. 18
2.4.2 Umbiliccaustics .................................. 20
2.5 Remedies to avoid caustics in ray-tracing simulations . . . . . . . . . . . . . . . . . . 23
2.5.1 Artificial intensity limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Etalon integrals and uniform approximations . . . . . . . . . . . . . . . . . . 25
2.5.3 Phase-space rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Summary .......................................... 29
2.A Review of the Wigner–Weyl symbol calculus . . . . . . . . . . . . . . . . . . . . . . . 30
2.B Basic results from catastrophe theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 Linear symplectic and metaplectic transforms 36
3.1 Introduction......................................... 36
3.2 Linear symplectic transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Basic definitions and identities . . . . . . . . . . . . . . . . . . . . . . . . . . 37
iv
3.2.2 Symplectic submatrices in the SVD basis . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Near-identity symplectic matrices . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.4 Linear orthosymplectic transformations . . . . . . . . . . . . . . . . . . . . . 43
3.3 Unitary metaplectic transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Definition, derivation, and integral form . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Singular metaplectic transforms . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.3 Pseudo-differential representation of the metaplectic transform . . . . . . . . 51
3.3.4 Metaplectic transforms of some example functions . . . . . . . . . . . . . . . 55
3.4 Case study: time evolution of the quantum harmonic oscillator . . . . . . . . . . . . 57
3.5 Case study: paraxial propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.1 General expression and special cases . . . . . . . . . . . . . . . . . . . . . . . 59
3.5.2 Connection to far-field diffraction theory . . . . . . . . . . . . . . . . . . . . . 62
3.6 Summary .......................................... 66
3.A Metaplectic transforms in the mixed basis of configuration and coherent states . . . 66
3.B Verification of the operator MT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.C Deriving the MT from its pseudo-differential representation . . . . . . . . . . . . . . 69
4 Fast algorithm for near-identity metaplectic transforms 71
4.1 Introduction......................................... 71
4.2 Local fast near-identity metaplectic transform . . . . . . . . . . . . . . . . . . . . . . 71
4.2.1 Denitions ..................................... 71
4.2.2 Runtimeestimate.................................. 73
4.2.3 Stability....................................... 74
4.2.4 Examples ...................................... 79
4.3 Unitary fast near-identity metaplectic transform . . . . . . . . . . . . . . . . . . . . 82
4.3.1 Derivation...................................... 82
4.3.2 Unitarityverication................................ 85
4.3.3 Runtimeestimate.................................. 86
4.3.4 Convergence and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.5 Examples ...................................... 89
4.4 Summary .......................................... 92
4.A Reducing the PMT to an envelope equation for eikonal functions . . . . . . . . . . . 94
v
摘要:

MetaplecticgeometricalopticsNicolasAlexanderLopezADissertationPresentedtotheFacultyofPrincetonUniversityinCandidacyfortheDegreeofDoctorofPhilosophyRecommendedforAcceptancebytheDepartmentofAstrophysicalSciencesPrograminPlasmaPhysicsAdviser:IlyaY.DodinNovember2022©CopyrightbyNicolasAlexanderLopez,2022...

展开>> 收起<<
Metaplectic geometrical optics Nicolas Alexander Lopez A Dissertation.pdf

共203页,预览5页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:203 页 大小:5.14MB 格式:PDF 时间:2025-05-02

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 203
客服
关注