Brownian noise effects on magnetic focusing of prolate and oblate spheroids in channel flow Mohammad Reza Shabanniya1and Ali Naji2a

2025-04-30 0 0 2.17MB 38 页 10玖币
侵权投诉
Brownian noise effects on magnetic focusing of prolate and oblate
spheroids in channel flow
Mohammad Reza Shabanniya1and Ali Naji2, a)
1)School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511,
Iran
2)School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511,
Iran
We investigate Brownian noise effects on magnetic focusing of prolate and oblate spheroids carrying perma-
nent magnetic dipoles in channel (Poiseuille) flow subject to a uniform magnetic field. The focusing is effected
by the low-Reynolds-number wall-induced hydrodynamic lift which can be tuned via tilt angle of the field
relative to the flow direction. This mechanism is incorporated in a steady-state Smoluchowski equation that
we solve numerically to analyze the noise effects through the joint position-orientation probability distribu-
tion function of spheroids within the channel. The results feature partial and complete pinning of spheroidal
orientation as the field strength is increased and reveal remarkable and even counterintuitive noise-induced
phenomena (specifically due to translational particle diffusivity) deep into the strong-field regime. These in-
clude field-induced defocusing, or lateral broadening of the focused spheroidal layer, upon strengthening the
field. We map out focusing ‘phase’ diagrams based on the field strength and tilt angle to illustrate different
regimes of behavior including centered focusing and defocusing in transverse field, and off-centered focusing
in tilted fields. The latter encompasses two subregimes of optimal and shouldered focusing where spheroidal
density profiles across the channel width display either an isolated off-centered peak or a skewed peak with a
pronounced shoulder stretching toward the channel center. We corroborate our results by analyzing stability
of deterministic fixed points and a reduced one-dimensional probabilistic theory which we introduce to semi-
quantitatively explain noise-induced behavior of pinned spheroids under strong fields. We also elucidate the
implications of our results for efficient shape-based sorting of magnetic spheroids.
I. INTRODUCTION
Magnetic separation of nano/microparticles in micro-
fluidic setups have emerged as an important technological
tool especially in biomedical research16. The separation
methods typically involve a mixture of magnetic or mag-
netically labeled biological or synthetic particles in an
imposed shear flow within properly designed microchan-
nels. The system is subjected to an external magnetic
field to produce controlled alterations in the flow-driven
motion of target particles based on their size, shape and
magnetic properties69. A host of bioparticles can be
manipulated using such setups. These include proteins,
nucleic acids, bacteria such as Escherichia coli, and cells
such as red blood cells and circulating tumor cells1014.
Similar methods can be used for detection and sorting
of artificial magnetic beads. The latter often consist of a
nonmagnetic (e.g., spherical or ellipsoidal) core coated or
doped by magnetic materials (e.g., ferromagnetic chrome
dioxide, superparamagnetic magnetite, etc.)1523.
Magnetic separation techniques often use spatially
nonuniform magnetic fields to create net magnetic forces
on the target particles. The force magnitude is tuned by
adjusting, e.g., the field gradient and/or the magnetic
susceptibility mismatch between the particles and the
background fluid, enabling cross-stream magnetophoretic
migration and, hence, separation of the particles24.
a)Corresponding author. Email: a.naji@ipm.ir
Utilizing uniform magnetic fields has also received
mounting attention in recent years as an alternative route
to separation of magnetic (nonmagnetic) particles in non-
magnetic (magnetic) microfluidic flows2535. In a uni-
form field, the magnetophoretic effect is absent, as mag-
netic particles experience no net force from the applied
field but only a torque that augments the torque expe-
rienced from the imposed shear. These torques are both
inherently shape dependent. Thus, other than offering
practical advantages (e.g., access to large field-exposed
areas and high-throughput parallelization of multiple
channels26), uniform fields facilitate a robust shape-based
approach to magnetic particle separation5,6.
Recent experiments have indeed established the above
strategy for separation of prolate paramagnetic spheroids
from paramagnetic spheres of the same volume26,27.
These experiments utilize a pressure-driven channel flow
at low Reynolds number and a uniform (static) mag-
netic field applied either transversally or with a tilt an-
gle relative to the flow direction. In the absence of
field, the particles were shown to undergo standard Jef-
fery rotation36,37 due to the shear-induced torque. In
a transverse field26, the up-down symmetry pertinent to
these rotations breaks down for prolate spheroids but not
the spheres (magnetic torque vanishes on paramagnetic
spheres). This rotational asymmetry is coupled with lat-
eral particle translation across the channel width through
the particle-wall hydrodynamic interactions, specifically,
the wall-induced hydrodynamic lift, which in turn ef-
fects net migration of prolate spheroids to the chan-
nel center. This mechanism holds under weak fields,
arXiv:2210.10918v1 [cond-mat.soft] 19 Oct 2022
2
also for nonmagnetic particles in ferrofluid flows26,27. It
has been scrutinized by deterministic simulations and
theories2628,3135 which also illuminate the more com-
plex particle migration pattern observed27 under tilted
fields and the orientational pinning of spheroids2634,38,39
that follows from the counterbalance between field and
shear-induced torques at strong fields40.
The strong-field mechanism for separation of mag-
netic spheroids with pinned orientation was first ad-
dressed in Refs.29,30. These studies considered prolate
spheroids of permanent (ferro)magnetic dipole moment
in two-dimensional (2D) or plane Poiseuille flow and also
in three-dimensional (3D) flows within rectangular and
cylindrical channels. Using far-field hydrodynamic cal-
culations of the wall-induced lift, they showed that ori-
entationally pinned spheroids laterally translate within
the channel and focus at specific shape-dependent lat-
itudes upon adjusting the field direction. The far-field
theory closely reproduces boundary element simulations
especially at spheroid-wall separations exceeding a couple
particle sizes. When the applied field is strong enough,
particle translation and rotation largely occur within the
field plane26,27,29,40, and the results in 3D rectangular
channels of sufficiently large cross-sectional aspect ratio
reproduce those in the 2D flow29,30. In this latter set-
ting, the differences between cross-stream migration of
prolate ferromagnetic and paramagnetic spheroids under
weak and strong magnetic fields have also been studied
using direct finite-element numerical simulations31.
In this paper, we also consider spheroidal particles of
permanent magnetic dipole in plane Poiseuille flow under
a uniform magnetic field (of arbitrary tilt angle within
the flow plane) according to the models in Ref.29,31. In
the theoretical and numerical studies cited above, lat-
eral migration and focusing of (para/ferro)magnetic par-
ticles have mainly been analyzed based on deterministic
particle trajectories and, to our knowledge, noise effects
have been examined only briefly by Brownian Dynamics
(BD) simulations in Ref.29. Our goal here is to elucidate
salient, unexplored aspects of Brownian noise, or particle
diffusivity, which we show to have important qualitative
ramifications that go beyond the deterministic picture.
We use three complementary approaches and con-
sider not only prolate but also oblate spheroids that
have received much less attention4144. The approaches
used here are (i) a continuum formulation based on
a steady-state Smoluchowski equation to describe the
joint position-orientation probability distribution (PDF)
of spheroids from weak to strong fields (without having
to deal with sampling fluctuations of analogous BD sim-
ulations); this will be referred to as the full probabilistic
approach; (ii) a systematic phase-space stability analysis
to classify fixed points of deterministic spheroidal dy-
namics at strong fields; (iii) a reduced probabilistic theory
to describe the noise-induced behavior of spheroids on
a one-dimensional (1D) pinning curve in the position-
orientation coordinate space at strong fields. To achieve
our goals, the far-field hydrodynamic contributions (in-
cluding the hydrodynamic lift) due to the channel con-
finement need to be derived without imposing the strict-
pinning constraint of Ref.29 on the spheroidal orientation.
We provide these derivations in the Supplementary Ma-
terial (SM) and use them within approach (i) and also
within our linear stability analysis and determination of
the eigenvalues associated with fixed points of the de-
terministic spheroidal dynamics in approach (ii). The
strict-pinning form of our generalized far-field expressions
are used within approach (iii) and the nonlinear stability
analysis of higher-order fixed points in approach (ii).
We show that the translational noise (particle dif-
fusivity) across the channel width can specifically im-
part unexpected effects in the strong-field regime which
is of main interest in this work. In particular, under
a transverse (longitudinal) field, where prolate (oblate)
spheroids are focused at the channel center, we find
that the translational noise causes a peculiar flat-top
subGaussian density profile for the spheroids across the
channel width. It also triggers a counterintuitive field-
induced defocusing upon amplifying the applied field be-
yond a certain threshold; that is, strengthening the field
leads to continual broadening of the spheroidal layer well
within the strong-field regime. The defocusing follows
because (1) the dynamical stability of centered focus-
ing turns out to be of nonlinear order (i.e., the first
and second derivatives of the lift relative to lateral po-
sition within the channel vanish at its center); and (2)
the higher-order stability progressively weakens (i.e., the
nonvanishing third derivative also tends to zero) as the
field is amplified. These features make the determinis-
tic focusing of spheroids at the channel center prone to
significant noise-induced alterations. They also stand at
odds with the linear stability with a finite first derivative
which is reported for the corresponding case in Refs.29,30.
When the applied field is tilted relative to the flow, the
spheroids are focused at an off-centered latitude within
the channel, reflected by a localized peak in their steady-
state density profile across the channel width. While our
results in this case partly corroborate those in Ref.29,
they unravel the subtle nature of the hydrodynamic lift
at the channel center which we find to be a half-stable
fixed point under a tilted field. The half-stability engen-
ders a broad noise-induced ‘shoulder’ in the spheroidal
density profiles. The shoulder stretches from the focusing
latitude to the channel center. It can be strong enough to
undermine the off-centered focusing peak. Since an opti-
mal focusing peak (e.g., for particle separation purposes)
is desired to be sharp and isolated, we map out compre-
hensive ‘phase’ diagrams based on the field strength and
tilt angle to identify various regimes of magnetic focusing
and, in particular, to distinguish the regime of optimal
focusing from that with noise-induced density shoulders.
We show that the reduced probabilistic theory (ap-
proach iii) can provide a direct link between the deter-
ministic fixed points and the full probabilistic results by
means of a virtual lift potential defined along the pinning
curve. To our knowledge, the full probabilistic approach
3
y=H
<latexit sha1_base64="CnyVJD+SX/J2xrrZk5S0GfwFVb0=">AAAB7nicbVDLSgNBEOz1GeMr6tHLxCB4Crsi6EUIeMkxgnlAdgmzk9lkyOzsMtMrLCEf4cWDIl79DL/Bm3/j5HHQxIKGoqqb7q4wlcKg6347a+sbm1vbhZ3i7t7+wWHp6Lhlkkwz3mSJTHQnpIZLoXgTBUreSTWncSh5OxzdTf32I9dGJOoB85QHMR0oEQlG0Urt3C/f+uV6r1Rxq+4MZJV4C1KBBRq90pffT1gWc4VMUmO6nptiMKYaBZN8UvQzw1PKRnTAu5YqGnMTjGfnTsi5VfokSrQthWSm/p4Y09iYPA5tZ0xxaJa9qfif180wugnGQqUZcsXmi6JMEkzI9HfSF5ozlLkllGlhbyVsSDVlaBMq2hC85ZdXSeuy6rlV7/6qUgs/53EU4BTO4AI8uIYa1KEBTWAwgid4gVcndZ6dN+d93rrmLCI8gT9wPn4AU0GPmA==</latexit>
<latexit sha1_base64="CnyVJD+SX/J2xrrZk5S0GfwFVb0=">AAAB7nicbVDLSgNBEOz1GeMr6tHLxCB4Crsi6EUIeMkxgnlAdgmzk9lkyOzsMtMrLCEf4cWDIl79DL/Bm3/j5HHQxIKGoqqb7q4wlcKg6347a+sbm1vbhZ3i7t7+wWHp6Lhlkkwz3mSJTHQnpIZLoXgTBUreSTWncSh5OxzdTf32I9dGJOoB85QHMR0oEQlG0Urt3C/f+uV6r1Rxq+4MZJV4C1KBBRq90pffT1gWc4VMUmO6nptiMKYaBZN8UvQzw1PKRnTAu5YqGnMTjGfnTsi5VfokSrQthWSm/p4Y09iYPA5tZ0xxaJa9qfif180wugnGQqUZcsXmi6JMEkzI9HfSF5ozlLkllGlhbyVsSDVlaBMq2hC85ZdXSeuy6rlV7/6qUgs/53EU4BTO4AI8uIYa1KEBTWAwgid4gVcndZ6dN+d93rrmLCI8gT9wPn4AU0GPmA==</latexit>
<latexit sha1_base64="CnyVJD+SX/J2xrrZk5S0GfwFVb0=">AAAB7nicbVDLSgNBEOz1GeMr6tHLxCB4Crsi6EUIeMkxgnlAdgmzk9lkyOzsMtMrLCEf4cWDIl79DL/Bm3/j5HHQxIKGoqqb7q4wlcKg6347a+sbm1vbhZ3i7t7+wWHp6Lhlkkwz3mSJTHQnpIZLoXgTBUreSTWncSh5OxzdTf32I9dGJOoB85QHMR0oEQlG0Urt3C/f+uV6r1Rxq+4MZJV4C1KBBRq90pffT1gWc4VMUmO6nptiMKYaBZN8UvQzw1PKRnTAu5YqGnMTjGfnTsi5VfokSrQthWSm/p4Y09iYPA5tZ0xxaJa9qfif180wugnGQqUZcsXmi6JMEkzI9HfSF5ozlLkllGlhbyVsSDVlaBMq2hC85ZdXSeuy6rlV7/6qUgs/53EU4BTO4AI8uIYa1KEBTWAwgid4gVcndZ6dN+d93rrmLCI8gT9wPn4AU0GPmA==</latexit>
<latexit sha1_base64="CnyVJD+SX/J2xrrZk5S0GfwFVb0=">AAAB7nicbVDLSgNBEOz1GeMr6tHLxCB4Crsi6EUIeMkxgnlAdgmzk9lkyOzsMtMrLCEf4cWDIl79DL/Bm3/j5HHQxIKGoqqb7q4wlcKg6347a+sbm1vbhZ3i7t7+wWHp6Lhlkkwz3mSJTHQnpIZLoXgTBUreSTWncSh5OxzdTf32I9dGJOoB85QHMR0oEQlG0Urt3C/f+uV6r1Rxq+4MZJV4C1KBBRq90pffT1gWc4VMUmO6nptiMKYaBZN8UvQzw1PKRnTAu5YqGnMTjGfnTsi5VfokSrQthWSm/p4Y09iYPA5tZ0xxaJa9qfif180wugnGQqUZcsXmi6JMEkzI9HfSF5ozlLkllGlhbyVsSDVlaBMq2hC85ZdXSeuy6rlV7/6qUgs/53EU4BTO4AI8uIYa1KEBTWAwgid4gVcndZ6dN+d93rrmLCI8gT9wPn4AU0GPmA==</latexit>
m
<latexit sha1_base64="2z6aiPBtmUr1GetnmuFT7Lwij3s=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjMi6LLgxmUF+4DpUDJppg3NY0juCGXoZ7hxoYhbP8JvcOffmGmLaOuBwOGcG+65J04Ft+D7X15pbX1jc6u8XdnZ3ds/qB4eta3ODGUtqoU23ZhYJrhiLeAgWDc1jMhYsE48vin8zgMzlmt1D5OURZIMFU84JeCkMO9JAqM4wXLar9b8uj8D/iHBMqmhBZr96mdvoGkmmQIqiLVh4KcQ5cQAp4JNK73MspTQMRmy0FFFJLNRPos8xWdOGeBEG/cU4Jn6+0dOpLUTGbvJIqFd9grxPy/MILmOcq7SDJii80VJJjBoXNyPB9wwCmLiCKGGu6yYjoghFFxLFVfCysmrpH1RDxy/u6w14o95HWV0gk7ROQrQFWqgW9RELUSRRo/oGb144D15r97bfLTkLSo8Rn/gvX8Dii+SHA==</latexit>
<latexit sha1_base64="2z6aiPBtmUr1GetnmuFT7Lwij3s=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjMi6LLgxmUF+4DpUDJppg3NY0juCGXoZ7hxoYhbP8JvcOffmGmLaOuBwOGcG+65J04Ft+D7X15pbX1jc6u8XdnZ3ds/qB4eta3ODGUtqoU23ZhYJrhiLeAgWDc1jMhYsE48vin8zgMzlmt1D5OURZIMFU84JeCkMO9JAqM4wXLar9b8uj8D/iHBMqmhBZr96mdvoGkmmQIqiLVh4KcQ5cQAp4JNK73MspTQMRmy0FFFJLNRPos8xWdOGeBEG/cU4Jn6+0dOpLUTGbvJIqFd9grxPy/MILmOcq7SDJii80VJJjBoXNyPB9wwCmLiCKGGu6yYjoghFFxLFVfCysmrpH1RDxy/u6w14o95HWV0gk7ROQrQFWqgW9RELUSRRo/oGb144D15r97bfLTkLSo8Rn/gvX8Dii+SHA==</latexit>
<latexit sha1_base64="2z6aiPBtmUr1GetnmuFT7Lwij3s=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjMi6LLgxmUF+4DpUDJppg3NY0juCGXoZ7hxoYhbP8JvcOffmGmLaOuBwOGcG+65J04Ft+D7X15pbX1jc6u8XdnZ3ds/qB4eta3ODGUtqoU23ZhYJrhiLeAgWDc1jMhYsE48vin8zgMzlmt1D5OURZIMFU84JeCkMO9JAqM4wXLar9b8uj8D/iHBMqmhBZr96mdvoGkmmQIqiLVh4KcQ5cQAp4JNK73MspTQMRmy0FFFJLNRPos8xWdOGeBEG/cU4Jn6+0dOpLUTGbvJIqFd9grxPy/MILmOcq7SDJii80VJJjBoXNyPB9wwCmLiCKGGu6yYjoghFFxLFVfCysmrpH1RDxy/u6w14o95HWV0gk7ROQrQFWqgW9RELUSRRo/oGb144D15r97bfLTkLSo8Rn/gvX8Dii+SHA==</latexit>
<latexit sha1_base64="2z6aiPBtmUr1GetnmuFT7Lwij3s=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjMi6LLgxmUF+4DpUDJppg3NY0juCGXoZ7hxoYhbP8JvcOffmGmLaOuBwOGcG+65J04Ft+D7X15pbX1jc6u8XdnZ3ds/qB4eta3ODGUtqoU23ZhYJrhiLeAgWDc1jMhYsE48vin8zgMzlmt1D5OURZIMFU84JeCkMO9JAqM4wXLar9b8uj8D/iHBMqmhBZr96mdvoGkmmQIqiLVh4KcQ5cQAp4JNK73MspTQMRmy0FFFJLNRPos8xWdOGeBEG/cU4Jn6+0dOpLUTGbvJIqFd9grxPy/MILmOcq7SDJii80VJJjBoXNyPB9wwCmLiCKGGu6yYjoghFFxLFVfCysmrpH1RDxy/u6w14o95HWV0gk7ROQrQFWqgW9RELUSRRo/oGb144D15r97bfLTkLSo8Rn/gvX8Dii+SHA==</latexit>
uf(r)
<latexit sha1_base64="iazDQCyAIPXQTJJAAKPueVJ/vQw=">AAACA3icdVDLSsNAFJ3UV62vqDvdDBahbkpS+loW3LisYB/QhjCZTtqhk0mYmQglBNz4K25cKOJW8Bvc+TdO2ioqeuDCuefcYe49XsSoVJb1buRWVtfWN/Kbha3tnd09c/+gK8NYYNLBIQtF30OSMMpJR1HFSD8SBAUeIz1vep75vWsiJA35lZpFxAnQmFOfYqS05JpHyTBAauL5ME5dv/TVifTMNYtWudqsVxo1aJWtOTSpVW27UYf2UimCJdqu+TYchTgOCFeYISkHthUpJ0FCUcxIWhjGkkQIT9GYDDTlKCDSSeY3pPBUKyPoh0IXV3Cufn+RoEDKWeDpyWxF+dvLxL+8Qaz8ppNQHsWKcLz4yI8ZVCHMAoEjKghWbKYJwoLqXSGeIIGw0rEVdAifl8L/SbdStjW/rBZb3usijjw4BiegBGzQAC1wAdqgAzC4AXfgATwat8a98WQ8L0ZzxjLCQ/ADxssHLjmYkA==</latexit>
<latexit sha1_base64="iazDQCyAIPXQTJJAAKPueVJ/vQw=">AAACA3icdVDLSsNAFJ3UV62vqDvdDBahbkpS+loW3LisYB/QhjCZTtqhk0mYmQglBNz4K25cKOJW8Bvc+TdO2ioqeuDCuefcYe49XsSoVJb1buRWVtfWN/Kbha3tnd09c/+gK8NYYNLBIQtF30OSMMpJR1HFSD8SBAUeIz1vep75vWsiJA35lZpFxAnQmFOfYqS05JpHyTBAauL5ME5dv/TVifTMNYtWudqsVxo1aJWtOTSpVW27UYf2UimCJdqu+TYchTgOCFeYISkHthUpJ0FCUcxIWhjGkkQIT9GYDDTlKCDSSeY3pPBUKyPoh0IXV3Cufn+RoEDKWeDpyWxF+dvLxL+8Qaz8ppNQHsWKcLz4yI8ZVCHMAoEjKghWbKYJwoLqXSGeIIGw0rEVdAifl8L/SbdStjW/rBZb3usijjw4BiegBGzQAC1wAdqgAzC4AXfgATwat8a98WQ8L0ZzxjLCQ/ADxssHLjmYkA==</latexit>
<latexit sha1_base64="iazDQCyAIPXQTJJAAKPueVJ/vQw=">AAACA3icdVDLSsNAFJ3UV62vqDvdDBahbkpS+loW3LisYB/QhjCZTtqhk0mYmQglBNz4K25cKOJW8Bvc+TdO2ioqeuDCuefcYe49XsSoVJb1buRWVtfWN/Kbha3tnd09c/+gK8NYYNLBIQtF30OSMMpJR1HFSD8SBAUeIz1vep75vWsiJA35lZpFxAnQmFOfYqS05JpHyTBAauL5ME5dv/TVifTMNYtWudqsVxo1aJWtOTSpVW27UYf2UimCJdqu+TYchTgOCFeYISkHthUpJ0FCUcxIWhjGkkQIT9GYDDTlKCDSSeY3pPBUKyPoh0IXV3Cufn+RoEDKWeDpyWxF+dvLxL+8Qaz8ppNQHsWKcLz4yI8ZVCHMAoEjKghWbKYJwoLqXSGeIIGw0rEVdAifl8L/SbdStjW/rBZb3usijjw4BiegBGzQAC1wAdqgAzC4AXfgATwat8a98WQ8L0ZzxjLCQ/ADxssHLjmYkA==</latexit>
<latexit sha1_base64="iazDQCyAIPXQTJJAAKPueVJ/vQw=">AAACA3icdVDLSsNAFJ3UV62vqDvdDBahbkpS+loW3LisYB/QhjCZTtqhk0mYmQglBNz4K25cKOJW8Bvc+TdO2ioqeuDCuefcYe49XsSoVJb1buRWVtfWN/Kbha3tnd09c/+gK8NYYNLBIQtF30OSMMpJR1HFSD8SBAUeIz1vep75vWsiJA35lZpFxAnQmFOfYqS05JpHyTBAauL5ME5dv/TVifTMNYtWudqsVxo1aJWtOTSpVW27UYf2UimCJdqu+TYchTgOCFeYISkHthUpJ0FCUcxIWhjGkkQIT9GYDDTlKCDSSeY3pPBUKyPoh0IXV3Cufn+RoEDKWeDpyWxF+dvLxL+8Qaz8ppNQHsWKcLz4yI8ZVCHMAoEjKghWbKYJwoLqXSGeIIGw0rEVdAifl8L/SbdStjW/rBZb3usijjw4BiegBGzQAC1wAdqgAzC4AXfgATwat8a98WQ8L0ZzxjLCQ/ADxssHLjmYkA==</latexit>
u
f
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
u
f
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
u
f
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
u
f
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
<latexit sha1_base64="/04Osn4Y48VXesnwyhoPQtjWkKQ=">AAAB+nicdVDLSsNAFJ3UV62vVJduRovgqiSlr2XBjcsK9gFNCJPppB06mYSZiVJiPsWNC0Xc+gF+gzv/xklbQUUPXDiccy9z5vgxo1JZ1odRWFvf2Nwqbpd2dvf2D8zyYV9GicCkhyMWiaGPJGGUk56iipFhLAgKfUYG/uwi9wc3REga8Ws1j4kbogmnAcVIackzy6kTIjX1A5hkXuqcBJlnVqxqvd2stRrQqloLaNKo23arCe2VUgErdD3z3RlHOAkJV5ghKUe2FSs3RUJRzEhWchJJYoRnaEJGmnIUEummi+gZPNPKGAaR0MMVXKjfL1IUSjkPfb2Z55S/vVz8yxslKmi7KeVxogjHy4eChEEVwbwHOKaCYMXmmiAsqM4K8RQJhJVuq6RL+Pop/J/0a1Vb86t6peO/LesogmNwCs6BDVqgAy5BF/QABrfgHjyCJ+POeDCejZflasFYVXgEfsB4/QS78JUC</latexit>
B
<latexit sha1_base64="z6b5Bb3N9ITnE+zMOnnmv6DIjTQ=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVZJUsd0V3bisYB+QhjKZTtqhk0mYuRFK6Ge4caGIWz/Cb3Dn3zhpK6jogYHDOXe4554gEVyDbX9YhZXVtfWN4mZpa3tnd6+8f9DRcaooa9NYxKoXEM0El6wNHATrJYqRKBCsG0yucr97x5TmsbyFacL8iIwkDzklYCQv60cExkGIL2eDcsWu2nNgu1p3a+duA+dKreG62FlaFbREa1B+7w9jmkZMAhVEa8+xE/AzooBTwWalfqpZQuiEjJhnqCQR0342jzzDJ0YZ4jBW5knAc/X7j4xEWk+jwEzmCfVvLxf/8rwUwrqfcZmkwCRdLApTgSHG+f14yBWjIKaGEKq4yYrpmChCwbRUMiV8XYr/Jx236hh+c1ZpBm+LOoroCB2jU+SgC9RE16iF2oiiGN2jR/RkgfVgPVsvi9GCtazwEP2A9foJh+ySHQ==</latexit>
<latexit sha1_base64="z6b5Bb3N9ITnE+zMOnnmv6DIjTQ=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVZJUsd0V3bisYB+QhjKZTtqhk0mYuRFK6Ge4caGIWz/Cb3Dn3zhpK6jogYHDOXe4554gEVyDbX9YhZXVtfWN4mZpa3tnd6+8f9DRcaooa9NYxKoXEM0El6wNHATrJYqRKBCsG0yucr97x5TmsbyFacL8iIwkDzklYCQv60cExkGIL2eDcsWu2nNgu1p3a+duA+dKreG62FlaFbREa1B+7w9jmkZMAhVEa8+xE/AzooBTwWalfqpZQuiEjJhnqCQR0342jzzDJ0YZ4jBW5knAc/X7j4xEWk+jwEzmCfVvLxf/8rwUwrqfcZmkwCRdLApTgSHG+f14yBWjIKaGEKq4yYrpmChCwbRUMiV8XYr/Jx236hh+c1ZpBm+LOoroCB2jU+SgC9RE16iF2oiiGN2jR/RkgfVgPVsvi9GCtazwEP2A9foJh+ySHQ==</latexit>
<latexit sha1_base64="z6b5Bb3N9ITnE+zMOnnmv6DIjTQ=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVZJUsd0V3bisYB+QhjKZTtqhk0mYuRFK6Ge4caGIWz/Cb3Dn3zhpK6jogYHDOXe4554gEVyDbX9YhZXVtfWN4mZpa3tnd6+8f9DRcaooa9NYxKoXEM0El6wNHATrJYqRKBCsG0yucr97x5TmsbyFacL8iIwkDzklYCQv60cExkGIL2eDcsWu2nNgu1p3a+duA+dKreG62FlaFbREa1B+7w9jmkZMAhVEa8+xE/AzooBTwWalfqpZQuiEjJhnqCQR0342jzzDJ0YZ4jBW5knAc/X7j4xEWk+jwEzmCfVvLxf/8rwUwrqfcZmkwCRdLApTgSHG+f14yBWjIKaGEKq4yYrpmChCwbRUMiV8XYr/Jx236hh+c1ZpBm+LOoroCB2jU+SgC9RE16iF2oiiGN2jR/RkgfVgPVsvi9GCtazwEP2A9foJh+ySHQ==</latexit>
<latexit sha1_base64="z6b5Bb3N9ITnE+zMOnnmv6DIjTQ=">AAAB8nicdVDLSsNAFJ3UV62vqks3g0VwVZJUsd0V3bisYB+QhjKZTtqhk0mYuRFK6Ge4caGIWz/Cb3Dn3zhpK6jogYHDOXe4554gEVyDbX9YhZXVtfWN4mZpa3tnd6+8f9DRcaooa9NYxKoXEM0El6wNHATrJYqRKBCsG0yucr97x5TmsbyFacL8iIwkDzklYCQv60cExkGIL2eDcsWu2nNgu1p3a+duA+dKreG62FlaFbREa1B+7w9jmkZMAhVEa8+xE/AzooBTwWalfqpZQuiEjJhnqCQR0342jzzDJ0YZ4jBW5knAc/X7j4xEWk+jwEzmCfVvLxf/8rwUwrqfcZmkwCRdLApTgSHG+f14yBWjIKaGEKq4yYrpmChCwbRUMiV8XYr/Jx236hh+c1ZpBm+LOoroCB2jU+SgC9RE16iF2oiiGN2jR/RkgfVgPVsvi9GCtazwEP2A9foJh+ySHQ==</latexit>
y=0
<latexit sha1_base64="bHlr2TlSZhXp5ewwoWSDhZ6Dagk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eJgbBU9gVQS9CwIvHCOYB2SXMTjrJkNnZZWZWWJZ8hBcPinj1M/wGb/6Nk8dBEwsaiqpuurvCRHBtXPfbKaytb2xuFbdLO7t7+wflw6OWjlPFsMliEatOSDUKLrFpuBHYSRTSKBTYDse3U7/9iErzWD6YLMEgokPJB5xRY6V25ldu/IrbK1fdmjsDWSXeglRhgUav/OX3Y5ZGKA0TVOuu5yYmyKkynAmclPxUY0LZmA6xa6mkEeogn507IWdW6ZNBrGxJQ2bq74mcRlpnUWg7I2pGetmbiv953dQMroOcyyQ1KNl80SAVxMRk+jvpc4XMiMwSyhS3txI2oooyYxMq2RC85ZdXSeui5rk17/6yWg8/53EU4QRO4Rw8uII63EEDmsBgDE/wAq9O4jw7b877vLXgLCI8hj9wPn4ALuGPgA==</latexit>
<latexit sha1_base64="bHlr2TlSZhXp5ewwoWSDhZ6Dagk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eJgbBU9gVQS9CwIvHCOYB2SXMTjrJkNnZZWZWWJZ8hBcPinj1M/wGb/6Nk8dBEwsaiqpuurvCRHBtXPfbKaytb2xuFbdLO7t7+wflw6OWjlPFsMliEatOSDUKLrFpuBHYSRTSKBTYDse3U7/9iErzWD6YLMEgokPJB5xRY6V25ldu/IrbK1fdmjsDWSXeglRhgUav/OX3Y5ZGKA0TVOuu5yYmyKkynAmclPxUY0LZmA6xa6mkEeogn507IWdW6ZNBrGxJQ2bq74mcRlpnUWg7I2pGetmbiv953dQMroOcyyQ1KNl80SAVxMRk+jvpc4XMiMwSyhS3txI2oooyYxMq2RC85ZdXSeui5rk17/6yWg8/53EU4QRO4Rw8uII63EEDmsBgDE/wAq9O4jw7b877vLXgLCI8hj9wPn4ALuGPgA==</latexit>
<latexit sha1_base64="bHlr2TlSZhXp5ewwoWSDhZ6Dagk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eJgbBU9gVQS9CwIvHCOYB2SXMTjrJkNnZZWZWWJZ8hBcPinj1M/wGb/6Nk8dBEwsaiqpuurvCRHBtXPfbKaytb2xuFbdLO7t7+wflw6OWjlPFsMliEatOSDUKLrFpuBHYSRTSKBTYDse3U7/9iErzWD6YLMEgokPJB5xRY6V25ldu/IrbK1fdmjsDWSXeglRhgUav/OX3Y5ZGKA0TVOuu5yYmyKkynAmclPxUY0LZmA6xa6mkEeogn507IWdW6ZNBrGxJQ2bq74mcRlpnUWg7I2pGetmbiv953dQMroOcyyQ1KNl80SAVxMRk+jvpc4XMiMwSyhS3txI2oooyYxMq2RC85ZdXSeui5rk17/6yWg8/53EU4QRO4Rw8uII63EEDmsBgDE/wAq9O4jw7b877vLXgLCI8hj9wPn4ALuGPgA==</latexit>
<latexit sha1_base64="bHlr2TlSZhXp5ewwoWSDhZ6Dagk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eJgbBU9gVQS9CwIvHCOYB2SXMTjrJkNnZZWZWWJZ8hBcPinj1M/wGb/6Nk8dBEwsaiqpuurvCRHBtXPfbKaytb2xuFbdLO7t7+wflw6OWjlPFsMliEatOSDUKLrFpuBHYSRTSKBTYDse3U7/9iErzWD6YLMEgokPJB5xRY6V25ldu/IrbK1fdmjsDWSXeglRhgUav/OX3Y5ZGKA0TVOuu5yYmyKkynAmclPxUY0LZmA6xa6mkEeogn507IWdW6ZNBrGxJQ2bq74mcRlpnUWg7I2pGetmbiv953dQMroOcyyQ1KNl80SAVxMRk+jvpc4XMiMwSyhS3txI2oooyYxMq2RC85ZdXSeui5rk17/6yWg8/53EU4QRO4Rw8uII63EEDmsBgDE/wAq9O4jw7b877vLXgLCI8hj9wPn4ALuGPgA==</latexit>
prolate
oblate
B
x
<latexit sha1_base64="UQLSLNkwx4/pOLR1Q0CAqVRTvBc=">AAAB53icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CXjwm4JpAsoTZSW8yZnZ2mZkVw5Iv8OJBxat/4jd482+cPA6aWNBQVHXT3RWmgmvjut9OYWV1bX2juFna2t7Z3SvvH9zpJFMMfZaIRLVCqlFwib7hRmArVUjjUGAzHF5P/OYDKs0TeWtGKQYx7UsecUaNlRqP3XLFrbpTkGXizUkF5qh3y1+dXsKyGKVhgmrd9tzUBDlVhjOB41In05hSNqR9bFsqaYw6yKeHjsmJVXokSpQtachU/T2R01jrURzazpiagV70JuJ/Xjsz0WWQc5lmBiWbLYoyQUxCJl+THlfIjBhZQpni9lbCBlRRZmw2JRuCt/jyMvHPqldVr3FeqYWfszSKcATHcAoeXEANbqAOPjBAeIIXeHXunWfnzXmftRaceYKH8AfOxw+XP42w</latexit>
<latexit sha1_base64="UQLSLNkwx4/pOLR1Q0CAqVRTvBc=">AAAB53icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CXjwm4JpAsoTZSW8yZnZ2mZkVw5Iv8OJBxat/4jd482+cPA6aWNBQVHXT3RWmgmvjut9OYWV1bX2juFna2t7Z3SvvH9zpJFMMfZaIRLVCqlFwib7hRmArVUjjUGAzHF5P/OYDKs0TeWtGKQYx7UsecUaNlRqP3XLFrbpTkGXizUkF5qh3y1+dXsKyGKVhgmrd9tzUBDlVhjOB41In05hSNqR9bFsqaYw6yKeHjsmJVXokSpQtachU/T2R01jrURzazpiagV70JuJ/Xjsz0WWQc5lmBiWbLYoyQUxCJl+THlfIjBhZQpni9lbCBlRRZmw2JRuCt/jyMvHPqldVr3FeqYWfszSKcATHcAoeXEANbqAOPjBAeIIXeHXunWfnzXmftRaceYKH8AfOxw+XP42w</latexit>
<latexit sha1_base64="UQLSLNkwx4/pOLR1Q0CAqVRTvBc=">AAAB53icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CXjwm4JpAsoTZSW8yZnZ2mZkVw5Iv8OJBxat/4jd482+cPA6aWNBQVHXT3RWmgmvjut9OYWV1bX2juFna2t7Z3SvvH9zpJFMMfZaIRLVCqlFwib7hRmArVUjjUGAzHF5P/OYDKs0TeWtGKQYx7UsecUaNlRqP3XLFrbpTkGXizUkF5qh3y1+dXsKyGKVhgmrd9tzUBDlVhjOB41In05hSNqR9bFsqaYw6yKeHjsmJVXokSpQtachU/T2R01jrURzazpiagV70JuJ/Xjsz0WWQc5lmBiWbLYoyQUxCJl+THlfIjBhZQpni9lbCBlRRZmw2JRuCt/jyMvHPqldVr3FeqYWfszSKcATHcAoeXEANbqAOPjBAeIIXeHXunWfnzXmftRaceYKH8AfOxw+XP42w</latexit>
<latexit sha1_base64="UQLSLNkwx4/pOLR1Q0CAqVRTvBc=">AAAB53icbVDLSgNBEOyNrxhfUY9eBoPgKeyKoN4CXjwm4JpAsoTZSW8yZnZ2mZkVw5Iv8OJBxat/4jd482+cPA6aWNBQVHXT3RWmgmvjut9OYWV1bX2juFna2t7Z3SvvH9zpJFMMfZaIRLVCqlFwib7hRmArVUjjUGAzHF5P/OYDKs0TeWtGKQYx7UsecUaNlRqP3XLFrbpTkGXizUkF5qh3y1+dXsKyGKVhgmrd9tzUBDlVhjOB41In05hSNqR9bFsqaYw6yKeHjsmJVXokSpQtachU/T2R01jrURzazpiagV70JuJ/Xjsz0WWQc5lmBiWbLYoyQUxCJl+THlfIjBhZQpni9lbCBlRRZmw2JRuCt/jyMvHPqldVr3FeqYWfszSKcATHcAoeXEANbqAOPjBAeIIXeHXunWfnzXmftRaceYKH8AfOxw+XP42w</latexit>
y
<latexit sha1_base64="TJTicPWA9sPbCa8TxExrhIHq8pQ=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3gxWMLxhbaUDbbSbt2swm7GyGE/gIvHlS8+k/8Dd78N24/Dtr6YODx3gwz88JUcG1c99tZWV1b39gsbZW3d3b39isHh/c6yRRDnyUiUe2QahRcom+4EdhOFdI4FNgKRzcTv/WISvNE3pk8xSCmA8kjzqixUjPvVapuzZ2CLBNvTqowR6NX+er2E5bFKA0TVOuO56YmKKgynAkcl7uZxpSyER1gx1JJY9RBMT10TE6t0idRomxJQ6bq74mCxlrncWg7Y2qGetGbiP95ncxEV0HBZZoZlGy2KMoEMQmZfE36XCEzIreEMsXtrYQNqaLM2GzKNgRv8eVl4p/Xrmte86JaDz9naZTgGE7gDDy4hDrcQgN8YIDwBC/w6jw4z86b8z5rXXHmCR7BHzgfP5jCjbE=</latexit>
<latexit sha1_base64="TJTicPWA9sPbCa8TxExrhIHq8pQ=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3gxWMLxhbaUDbbSbt2swm7GyGE/gIvHlS8+k/8Dd78N24/Dtr6YODx3gwz88JUcG1c99tZWV1b39gsbZW3d3b39isHh/c6yRRDnyUiUe2QahRcom+4EdhOFdI4FNgKRzcTv/WISvNE3pk8xSCmA8kjzqixUjPvVapuzZ2CLBNvTqowR6NX+er2E5bFKA0TVOuO56YmKKgynAkcl7uZxpSyER1gx1JJY9RBMT10TE6t0idRomxJQ6bq74mCxlrncWg7Y2qGetGbiP95ncxEV0HBZZoZlGy2KMoEMQmZfE36XCEzIreEMsXtrYQNqaLM2GzKNgRv8eVl4p/Xrmte86JaDz9naZTgGE7gDDy4hDrcQgN8YIDwBC/w6jw4z86b8z5rXXHmCR7BHzgfP5jCjbE=</latexit>
<latexit sha1_base64="TJTicPWA9sPbCa8TxExrhIHq8pQ=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3gxWMLxhbaUDbbSbt2swm7GyGE/gIvHlS8+k/8Dd78N24/Dtr6YODx3gwz88JUcG1c99tZWV1b39gsbZW3d3b39isHh/c6yRRDnyUiUe2QahRcom+4EdhOFdI4FNgKRzcTv/WISvNE3pk8xSCmA8kjzqixUjPvVapuzZ2CLBNvTqowR6NX+er2E5bFKA0TVOuO56YmKKgynAkcl7uZxpSyER1gx1JJY9RBMT10TE6t0idRomxJQ6bq74mCxlrncWg7Y2qGetGbiP95ncxEV0HBZZoZlGy2KMoEMQmZfE36XCEzIreEMsXtrYQNqaLM2GzKNgRv8eVl4p/Xrmte86JaDz9naZTgGE7gDDy4hDrcQgN8YIDwBC/w6jw4z86b8z5rXXHmCR7BHzgfP5jCjbE=</latexit>
<latexit sha1_base64="TJTicPWA9sPbCa8TxExrhIHq8pQ=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokI6q3gxWMLxhbaUDbbSbt2swm7GyGE/gIvHlS8+k/8Dd78N24/Dtr6YODx3gwz88JUcG1c99tZWV1b39gsbZW3d3b39isHh/c6yRRDnyUiUe2QahRcom+4EdhOFdI4FNgKRzcTv/WISvNE3pk8xSCmA8kjzqixUjPvVapuzZ2CLBNvTqowR6NX+er2E5bFKA0TVOuO56YmKKgynAkcl7uZxpSyER1gx1JJY9RBMT10TE6t0idRomxJQ6bq74mCxlrncWg7Y2qGetGbiP95ncxEV0HBZZoZlGy2KMoEMQmZfE36XCEzIreEMsXtrYQNqaLM2GzKNgRv8eVl4p/Xrmte86JaDz9naZTgGE7gDDy4hDrcQgN8YIDwBC/w6jw4z86b8z5rXXHmCR7BHzgfP5jCjbE=</latexit>
<latexit sha1_base64="FDtxlgN5KEvo/fOjIo9Du2stoEA=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvAi8cIbhJIljA7mSRjZmeWmV4hLPkHLx5UvPodfoM3/8bJ46CJBQ1FVTfdXXEqhUXf//ZWVtfWNzYLW8Xtnd29/dLBYd3qzDAeMi21acbUcikUD1Gg5M3UcJrEkjfi4c3EbzxyY4VW9zhKeZTQvhI9wSg6qd7GAUfaKZX9ij8FWSbBnJRhjlqn9NXuapYlXCGT1NpW4KcY5dSgYJKPi+3M8pSyIe3zlqOKJtxG+fTaMTl1Spf0tHGlkEzV3xM5TawdJbHrTCgO7KI3Ef/zWhn2rqJcqDRDrthsUS+TBDWZvE66wnCGcuQIZUa4WwkbUEMZuoCKLoRg8eVlEp5XrivB3UW5Gn/O0ijAMZzAGQRwCVW4hRqEwOABnuAFXj3tPXtv3vusdcWbJ3gEf+B9/ABS/o/c</latexit>
<latexit sha1_base64="FDtxlgN5KEvo/fOjIo9Du2stoEA=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvAi8cIbhJIljA7mSRjZmeWmV4hLPkHLx5UvPodfoM3/8bJ46CJBQ1FVTfdXXEqhUXf//ZWVtfWNzYLW8Xtnd29/dLBYd3qzDAeMi21acbUcikUD1Gg5M3UcJrEkjfi4c3EbzxyY4VW9zhKeZTQvhI9wSg6qd7GAUfaKZX9ij8FWSbBnJRhjlqn9NXuapYlXCGT1NpW4KcY5dSgYJKPi+3M8pSyIe3zlqOKJtxG+fTaMTl1Spf0tHGlkEzV3xM5TawdJbHrTCgO7KI3Ef/zWhn2rqJcqDRDrthsUS+TBDWZvE66wnCGcuQIZUa4WwkbUEMZuoCKLoRg8eVlEp5XrivB3UW5Gn/O0ijAMZzAGQRwCVW4hRqEwOABnuAFXj3tPXtv3vusdcWbJ3gEf+B9/ABS/o/c</latexit>
<latexit sha1_base64="FDtxlgN5KEvo/fOjIo9Du2stoEA=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvAi8cIbhJIljA7mSRjZmeWmV4hLPkHLx5UvPodfoM3/8bJ46CJBQ1FVTfdXXEqhUXf//ZWVtfWNzYLW8Xtnd29/dLBYd3qzDAeMi21acbUcikUD1Gg5M3UcJrEkjfi4c3EbzxyY4VW9zhKeZTQvhI9wSg6qd7GAUfaKZX9ij8FWSbBnJRhjlqn9NXuapYlXCGT1NpW4KcY5dSgYJKPi+3M8pSyIe3zlqOKJtxG+fTaMTl1Spf0tHGlkEzV3xM5TawdJbHrTCgO7KI3Ef/zWhn2rqJcqDRDrthsUS+TBDWZvE66wnCGcuQIZUa4WwkbUEMZuoCKLoRg8eVlEp5XrivB3UW5Gn/O0ijAMZzAGQRwCVW4hRqEwOABnuAFXj3tPXtv3vusdcWbJ3gEf+B9/ABS/o/c</latexit>
<latexit sha1_base64="FDtxlgN5KEvo/fOjIo9Du2stoEA=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvAi8cIbhJIljA7mSRjZmeWmV4hLPkHLx5UvPodfoM3/8bJ46CJBQ1FVTfdXXEqhUXf//ZWVtfWNzYLW8Xtnd29/dLBYd3qzDAeMi21acbUcikUD1Gg5M3UcJrEkjfi4c3EbzxyY4VW9zhKeZTQvhI9wSg6qd7GAUfaKZX9ij8FWSbBnJRhjlqn9NXuapYlXCGT1NpW4KcY5dSgYJKPi+3M8pSyIe3zlqOKJtxG+fTaMTl1Spf0tHGlkEzV3xM5TawdJbHrTCgO7KI3Ef/zWhn2rqJcqDRDrthsUS+TBDWZvE66wnCGcuQIZUa4WwkbUEMZuoCKLoRg8eVlEp5XrivB3UW5Gn/O0ijAMZzAGQRwCVW4hRqEwOABnuAFXj3tPXtv3vusdcWbJ3gEf+B9/ABS/o/c</latexit>
<latexit sha1_base64="FDtxlgN5KEvo/fOjIo9Du2stoEA=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvAi8cIbhJIljA7mSRjZmeWmV4hLPkHLx5UvPodfoM3/8bJ46CJBQ1FVTfdXXEqhUXf//ZWVtfWNzYLW8Xtnd29/dLBYd3qzDAeMi21acbUcikUD1Gg5M3UcJrEkjfi4c3EbzxyY4VW9zhKeZTQvhI9wSg6qd7GAUfaKZX9ij8FWSbBnJRhjlqn9NXuapYlXCGT1NpW4KcY5dSgYJKPi+3M8pSyIe3zlqOKJtxG+fTaMTl1Spf0tHGlkEzV3xM5TawdJbHrTCgO7KI3Ef/zWhn2rqJcqDRDrthsUS+TBDWZvE66wnCGcuQIZUa4WwkbUEMZuoCKLoRg8eVlEp5XrivB3UW5Gn/O0ijAMZzAGQRwCVW4hRqEwOABnuAFXj3tPXtv3vusdcWbJ3gEf+B9/ABS/o/c</latexit>
<latexit sha1_base64="FDtxlgN5KEvo/fOjIo9Du2stoEA=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvAi8cIbhJIljA7mSRjZmeWmV4hLPkHLx5UvPodfoM3/8bJ46CJBQ1FVTfdXXEqhUXf//ZWVtfWNzYLW8Xtnd29/dLBYd3qzDAeMi21acbUcikUD1Gg5M3UcJrEkjfi4c3EbzxyY4VW9zhKeZTQvhI9wSg6qd7GAUfaKZX9ij8FWSbBnJRhjlqn9NXuapYlXCGT1NpW4KcY5dSgYJKPi+3M8pSyIe3zlqOKJtxG+fTaMTl1Spf0tHGlkEzV3xM5TawdJbHrTCgO7KI3Ef/zWhn2rqJcqDRDrthsUS+TBDWZvE66wnCGcuQIZUa4WwkbUEMZuoCKLoRg8eVlEp5XrivB3UW5Gn/O0ijAMZzAGQRwCVW4hRqEwOABnuAFXj3tPXtv3vusdcWbJ3gEf+B9/ABS/o/c</latexit>
<latexit sha1_base64="FDtxlgN5KEvo/fOjIo9Du2stoEA=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvAi8cIbhJIljA7mSRjZmeWmV4hLPkHLx5UvPodfoM3/8bJ46CJBQ1FVTfdXXEqhUXf//ZWVtfWNzYLW8Xtnd29/dLBYd3qzDAeMi21acbUcikUD1Gg5M3UcJrEkjfi4c3EbzxyY4VW9zhKeZTQvhI9wSg6qd7GAUfaKZX9ij8FWSbBnJRhjlqn9NXuapYlXCGT1NpW4KcY5dSgYJKPi+3M8pSyIe3zlqOKJtxG+fTaMTl1Spf0tHGlkEzV3xM5TawdJbHrTCgO7KI3Ef/zWhn2rqJcqDRDrthsUS+TBDWZvE66wnCGcuQIZUa4WwkbUEMZuoCKLoRg8eVlEp5XrivB3UW5Gn/O0ijAMZzAGQRwCVW4hRqEwOABnuAFXj3tPXtv3vusdcWbJ3gEf+B9/ABS/o/c</latexit>
<latexit sha1_base64="FDtxlgN5KEvo/fOjIo9Du2stoEA=">AAAB7HicbVDLSgNBEOz1GeMr6tHLYBA8hV0R1FvAi8cIbhJIljA7mSRjZmeWmV4hLPkHLx5UvPodfoM3/8bJ46CJBQ1FVTfdXXEqhUXf//ZWVtfWNzYLW8Xtnd29/dLBYd3qzDAeMi21acbUcikUD1Gg5M3UcJrEkjfi4c3EbzxyY4VW9zhKeZTQvhI9wSg6qd7GAUfaKZX9ij8FWSbBnJRhjlqn9NXuapYlXCGT1NpW4KcY5dSgYJKPi+3M8pSyIe3zlqOKJtxG+fTaMTl1Spf0tHGlkEzV3xM5TawdJbHrTCgO7KI3Ef/zWhn2rqJcqDRDrthsUS+TBDWZvE66wnCGcuQIZUa4WwkbUEMZuoCKLoRg8eVlEp5XrivB3UW5Gn/O0ijAMZzAGQRwCVW4hRqEwOABnuAFXj3tPXtv3vusdcWbJ3gEf+B9/ABS/o/c</latexit>
FIG. 1. Schematic view of magnetic spheroids (not drawn to
scale) with permanent dipole moment malong their symme-
try axis in a channel of width Hsubject to plane Poiseuille
flow uf(r)and uniform magnetic field Bof tilt angle θB.
and also the deterministic analysis as we report here have
not been considered in the present context before. A
quadratic lift potential has however been shown to exist
in the vicinity of the off-centered focusing latitude via a
Langevin equation in Ref.29. Our derivation of the re-
duced theory shows that this insightful observation can
formally be extended to the whole pinning curve, leading
to useful (albeit semiquantitative) analytical predictions.
We discuss our model and methods in Sections II and
III, our results for prolate spheroids in transverse field
in Section IV and for prolate/oblate spheroids in tilted
fields in Sections V-VII. The implications of our results
for shape-based sorting of spheroids are given in Section
VIII. Details of our generalized far-field calculations and
deterministic analysis appear in the SM and details of
our reduced probabilistic theory appear in Appendix D.
II. MODEL
The magnetic particles in our model are taken as rigid,
passive and neutrally buoyant colloidal spheroids within
a long planar channel of width Hand rigid no-slip walls
at y= 0 and H; see Fig. 1. The channel is subjected to
a stationary plane Poiseuille flow uf(r) = uf(y)ˆ
xwhere
r= (x, y, z)is the position vector within the channel, ˆ
x
is the unit vector in x-direction, and uf(y)= ˙γy (1y/H)
is the velocity profile in y-direction with maximum shear
rate ˙γ= 4Umax/H and fluid velocity Umax >0. The im-
permeability of channel walls is modeled via a harmonic
steric potential which creates repulsive transverse forces
when the spheroids come into contact with them; see Ap-
pendix A. A static uniform magnetic field Bis applied
within the xyplane; i.e., B·ˆ
z= 0 where ˆ
z=ˆ
x׈
yin
the out-of-plane unit vector. The field strength and tilt
angle (relative to the flow direction) are B=|B|and θB.
The spheroids are assumed to be of equal volume V(α)
and aspect ratio α=a/b, where ais half-length of the
spheroidal axis of symmetry, i.e., the major (minor) body
axis for prolate (oblate) shapes α>1(α <1), and bis half-
length of the other two axes. The spheroids carry per-
manent magnetic dipole moments m=mˆ
d(m0) along
their symmetry axis identified by the orientation unit vec-
tor ˆ
d. Different shapes will be studied at constant volume
V(α) = V0, or effective radius Reff = (3V0/4π)1/3(radius
of reference sphere,α= 1) and, hence, constant dipole
moment26,27,29. Since the shear and field tend to orient
the symmetry axis in the xyplane, ˆ
dis assumed to vary
in-plane at strong enough shear/field strengths26,27,29,40.
We can thus use the 2D parametrization ˆ
d=(cos θ, sin θ)
with θbeing the orientation angle relative to the x-axis.
III. CONTINUUM PROBABILISTIC FORMULATION
We assume that the translational and rotational dy-
namics of spheroids within the channel are governed by
deterministic forces and torques that result from the im-
posed shear, the external magnetic field, the spheroid-
wall steric and hydrodynamic interactions, and also the
Brownian (thermal) ambient noise. Such a description
is expected to hold for sufficiently dilute suspensions,
where interparticle forces are negligible, or for individual
spheroids advecting through the channel. The system
properties can then be studied using a continuum proba-
bilistic approach based on a noninteracting Smoluchowski
equation that governs the joint position-orientation prob-
ability distribution function (PDF) Ψ(r;ˆ
d)of spheroids
with center position rand axial orientation ˆ
d. In the
steady state, the Smoluchowski equation reads45,46
r·(vΨ) + Rˆ
d·(ωΨ) = r·DT·rΨ + DRR2
ˆ
dΨ,(1)
where Rˆ
d=ˆ
d× ∇ˆ
dis the rotation operator, ˆ
dis
the unconstrained Cartesian gradient relative to ˆ
d, and
v=v(r;ˆ
d)and ω=ω(r;ˆ
d)are the net deterministic
translational and angular flux velocities of spheroids.
In Eq. (1), DT(α)is the second-rank translational
diffusivity tensor and DR(α)is the in-plane rotational
diffusivity due to translational and rotational Brownian
noises, respectively. The translational diffusivity ten-
sor is written as DT(α) = D
k
(α)ˆ
dˆ
d+D
(α)Iˆ
dˆ
d
where Iis the identity tensor and D
k
(α)and D
(α)are
the longitudinal and transverse diffusivities in parallel
and perpendicular directions relative to the spheroidal
symmetry axis. The diffusivities are assumed to fol-
low the Stokes-Einstein relations for no-slip spheroids.
They are expressed using spheroidal shape functions4750
k
,(α)=D
k
,(α)/D0T and R(α)=DR(α)/D0R whose
explicit forms are reproduced in Section 1, SM. Here,
D0T =kBT/(6πηReff )and D0R =kBT/(8πηR3
eff )are
translational and rotational diffusivities of the reference
sphere, ηis the fluid viscosity and kBTis the thermal en-
ergy. Also, DT(α)and DR(α)express bulk diffusivities of
free spheroids, as the confinement effects due to spheroid-
wall steric and hydrodynamic interactions are explicitly
included via deterministic fluxes that we discuss next.
4
A. Translational flux velocities
The net deterministic translational flux velocity of the
spheroids can be written as the sum of three terms
v(r;ˆ
d) = uf(r) + u(st)(r;ˆ
d) + u(im)(r;ˆ
d),(2)
where ufis the advective flux, and u(st) and u(im) are the
translational flux velocities due to spheroid-wall steric
and hydrodynamic interactions, respectively. The steric
term u(st) follows from the wall potential; see Eqs. (A2)
and (A3), Appendix A. The hydrodynamic term u(im)
is derived using the singularity image method of Blake51
by approximating the far-field low-Reynolds-number flow
around a no-slip spheroid of center position rand ori-
entation ˆ
dwith that of a second-order stresslet tensor
S(r;ˆ
d)37. Relative to a given wall, and using Einstein
summation, the components of u(im) at position r0read
u(im)
i(r0;ˆ
d) = 1
8πη K(im)
ijk (r0,r)Sjk(r;ˆ
d),(3)
where Sjk and K(im)
ijk are the components of S(r;ˆ
d)
and the third-order hydrodynamic Green function ten-
sor K(im)(r0,r)and i, j, k denote Cartesian coordinates
which we show interchangeably by {x, y, z}or {1,2,3}.
The term u(im)(r;ˆ
d)thus gives the flux velocity from
hydrodynamic interactions of a spheroid with its wall-
induced singularity images. It involves the equal-point
Green function (self-mobility tensor) K(im)(r,r)which we
use on the first-image level from Refs.52,53.
The explicit forms of Sand u(im) are derived in Section
2 of the SM for arbitrary prolate/oblate aspect ratio, field
strength and tilt angle and, thus, extend the expressions
given in Ref.29 for strictly pinned prolate spheroids. Such
an extension is essential to our later linearized stability
analysis and also our probabilistic analysis where field-
induced pinning is not imposed but obtained as a result.
B. Angular flux velocities
The net deterministic angular flux velocity of the
spheroids can also be written as the sum of three terms
ω(r;ˆ
d) = ωf(r;ˆ
d) + ωext(ˆ
d) + ω(im)(r;ˆ
d),(4)
where ωf=ωf(y, θ)ˆ
z,ωext =ωext(θ)ˆ
zand ω(im) =
ω(im)(y, θ)ˆ
zare the shear, field and wall-induced hy-
drodynamic angular velocities, respectively. The shear
and field terms in the signed magnitude of ω, i.e., ω=
ωf+ωext +ω(im), standardly follow as (Section 2.3, SM)
ωf(y, θ) = ˙γ
212y
H(β(α) cos 2θ1) ,(5)
ωext(θ) = DR(α)
kBTmB sin (θBθ).(6)
Here, β(α)=(α21)/(α2+1) is the Bretherton number54.
For prolate/oblate spheroids, one has 0<±β(α)<1.
The image term ω(im) is derived in Section 2.5 of the
SM and is (due to its lengthy expression) given in rescaled
form in Eq. (B1). While this term has not been consid-
ered before and is included in our probabilistic analysis,
it turns out to be small and of negligible impact on our
results relative to the other angular terms (Appendix B).
C. Dimensionless representation
Due to translational symmetry in x-direction, the solu-
tions of Eq. (1) admit the form Ψ=Ψ(y, θ). The latitude-
orientation plane yθis then taken as the reduced coordi-
nate space. Also, due to fluid incompressibility, ufdrops
out of the l.h.s. of Eq. (1) and only the y-components of
u(st) and u(im) prevail, combining into the net transverse
velocity vy=u(st)
y+u(im)
ywhere u(im)
yis the hydrodynamic
lift. We rescale the length and time units with Reff and
the inverse rotational diffusivity D1
0R , respectively, lead-
ing to the rescaling of lateral coordinate and flux veloc-
ities as ˜y=y/Reff ,˜vy(˜y, θ) = vy(Reff ˜y, θ)/(Reff D0R)and
˜ω(˜y, θ) = ω(Reff ˜y, θ)/D0R. The dimensionless parameter
space is thus spanned by the aspect ratio α, tilt angle
of the field θB, rescaled channel width ˜
H, flow Péclet
number (rescaled shear strength) Pef, and the magnetic
coupling parameter (rescaled field strength) χ, where
˜
H=H
Reff
,Pef=˙γ
D0R
and χ=mB
kBT.(7)
We obtain the rescaled forms of the net transverse ve-
locity, the hydrodynamic lift and the net angular velocity
(see Appendices Aand Band Section 2 of the SM) as
˜vy(˜y, θ) = ˜u(st)
y(˜y, θ) + ˜u(im)
y(˜y, θ),(8)
˜u(im)
y(˜y, θ) = ζ(α)1
˜y21
(˜
H˜y)2sin 2θ(15Pef
64 12˜y
˜
HXM+ 2YMZMcos2θ+2XM2YMsin2θ
9β(α)
16 1
2YHPef12˜y
˜
Hcos 2θ+χ
ζ(α)sin (θBθ)),(9)
˜ω(˜y, θ) = Pef
212˜y
˜
H(β(α) cos 2θ1) + χR(α) sin (θBθ) + ˜ω(im)(˜y, θ),(10)
5
where XM, Y M, ZMand YHare shape-dependent resis-
tance functions (see Table 1 of the SM), and ζ(α) = α2
and α1for prolate and oblate spheroids, respectively37.
Our expression in Eq. (9) recovers the standard zero-
lift result, u(im)
y= 0, for nonmagnetic spheres (χ= 0;
α=1,XM=YM=ZM=1,YH= 0) due to the absence of
inertia in the present setting5460. It also shows that the
lift is consistently zero on (ferro)magnetic spheres (χ >0)
under a uniform field of arbitrary tilt angle. For this rea-
son, spheres are excluded from our later discussion given
their lack of magnetic focusing in the present context.
D. Rescaled Smoluchowski equation
The rescaled form of the Smoluchowski equation (1)
for the joint latitude-orientation PDF of spheroids reads
˜y˜vy(˜y, θ)˜
Ψ+
θ ˜ω(˜y, θ)˜
Ψ=(11)
4
3+(α)(α) cos 2θ2˜
Ψ
˜y2+ ∆R(α)2˜
Ψ
θ2,
where ±= (∆
k
±
)/2combine the shape functions
k
,. With no loss of generality, we choose the com-
putational domain to solve Eq. (11) as y[0, H]and
θ[θBπ, θB+π)(we may later depict the PDF over
other visually suitable intervals of θ). The rescaled PDF
is defined as ˜
Ψ(˜y, θ) = Reff Ψ(Reff ˜y, θ)/¯nwhere ¯n=
RH
0RθB+π
θBπΨ(y, θ) dθdygives the mean number of parti-
cles per unit xzarea in a 3D realization of the system;
hence, the normalization R˜
H
0RθB+π
θBπ˜
Ψ(˜y, θ) dθd˜y=1.
Equation (11) is solved numerically using finite-
element methods and by imposing periodic boundary
conditions on θand, for numerical convenience, no-flux
boundary conditions on the channel walls50,61. We vary
the system parameters in ranges that cover realistic val-
ues (Appendix C). The tilt angle of applied field is re-
stricted to the first quadrant 0θBπ/2to avoid re-
dundant solutions, as solutions of Eq. (11) in other θB-
quadrants can be recovered using the symmetry trans-
formation {θBθB+π, θ θ+π}39,40 and, as our
numerical inspections for the key regimes of interest here
indicate, also using {θBπθB, θ πθ, ˜y˜
H˜y}.
E. Analytical schemes complementing numerical solutions
In our numerical implementation of Eq. (11), i.e., the
full probabilistic approach, we retain all flux velocities in
Eqs. (8) and (10). In the key regimes of magnetic fo-
cusing analyzed in this work (Sections IV and V), the
spheroids are focused sufficiently away from the walls.
This renders the steric term ˜u(st)
yirrelevant. As noted
before, the wall-induced hydrodynamic angular velocity
˜ω(im) also stays negligible (Appendix B). Discarding the
above two terms enables approximate analytical schemes
that can be used to further illuminate our numerical find-
ings. Since we frequently allude to the predictions of
these schemes in the upcoming sections, a summary of
their scope and applicability will be in order:
Deterministic dynamical stability analysis: This ap-
proach is based on noise-free translational and rota-
tional dynamical equations for the spheroidal motion,
˜
˙y= ˜vy(˜y, θ)'˜u(im)
y(˜y, θ),(12)
˜
˙
θ= ˜ω(˜y, θ)'˜ωf(˜y, θ) + ˜ωext(θ),(13)
where ˜
˙
θ=ˆ
θ·(˜
ω׈
d)and ˆ
θis the counterclockwise polar
unit vector. This approach is useful in predicting the
boundaries of most, albeit not all, regimes of magnetic
focusing that we later identify in this work. The said
boundaries are determined based on the dynamical
stability of fixed points (˜y, θ)of Eqs. (12) and (13)
which follow by setting ˜
˙y=˜
˙
θ=0. The fixed points can
be obtained from the intersections of nullclines that
give the loci of coordinate-space points where either
˜
˙yor ˜
˙
θvanishes6264. According to Eq. (12), ˜
˙y= 0
yields the zero-lift nullclines. From Eq. (9), these fol-
low as the channel centerline ˜y=˜
H/2and the lines
θ=/2for integer n. On the other hand, according
to Eq. (13), ˜
˙
θ= 0 yields the loci of coordinate-space
points where the shear and field-induced torques coun-
terbalance and produce zero net angular velocity. The
ensuing nullclines include the orientationally stable
(deterministic) pinning curve θ=θp(˜y)along which
˜
˙
θ/∂θ < 0and, hence, the spheroidal orientation is
pinned29,30,40. We shall elaborate on this later.
While deterministic equations have previously been
used to study noise-free trajectories of prolate
spheroids29,30, a comprehensive study to classify the
phase-space dynamical stability of their fixed points
has been missing. We present such an analysis for
both prolate and oblate spheroids in Section 3 of the
SM and use its predictions in what follows to interpret
the probabilistic solutions obtained from Eq. (11).
While the deterministic results are valuable, they ex-
hibit important departures from the probabilistic ones
especially at strong fields, contrasting the intuitive as-
sumption that noise (particle diffusivity) can be ne-
glected in the strong-field regime29,30.
For future reference, the fixed point stability is stan-
dardly determined on the linearization level by the
eigenvalues λyand λθof the Jacobian matrix
J=(˜
˙y, ˜
˙
θ)
(˜y, θ)'
˜u(im)
y
˜y
˜u(im)
y
θ
˜ω
˜y
˜ω
θ
˜y
.(14)
When λyand/or λθvanish, we use a higher-order
(nonlinear) analysis6264 to determine the true nature
of the fixed point. For the most part, λyand λθturn
摘要:

BrowniannoiseeectsonmagneticfocusingofprolateandoblatespheroidsinchannelowMohammadRezaShabanniya1andAliNaji2,a)1)SchoolofPhysics,InstituteforResearchinFundamentalSciences(IPM),Tehran19538-33511,Iran2)SchoolofNanoScience,InstituteforResearchinFundamentalSciences(IPM),Tehran19538-33511,IranWeinvesti...

展开>> 收起<<
Brownian noise effects on magnetic focusing of prolate and oblate spheroids in channel flow Mohammad Reza Shabanniya1and Ali Naji2a.pdf

共38页,预览5页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:38 页 大小:2.17MB 格式:PDF 时间:2025-04-30

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 38
客服
关注