Collinear Parton Dynamics Beyond DGLAP Hao Chen1Max Jaarsma2 3Yibei Li1Ian Moult4Wouter J. Waalewijn2 3and Hua Xing Zhu1 1Zhejiang Institute of Modern Physics Department of Physics Zhejiang University Hangzhou 310027 China

2025-04-29 0 0 4.21MB 6 页 10玖币
侵权投诉
Collinear Parton Dynamics Beyond DGLAP
Hao Chen,1Max Jaarsma,2, 3 Yibei Li,1Ian Moult,4Wouter J. Waalewijn,2, 3 and Hua Xing Zhu1
1Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou, 310027, China
2Nikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands
3Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics,
University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
4Department of Physics, Yale University, New Haven, CT 06511
Renormalization group evolution equations describing the scale dependence of quantities in quan-
tum chromodynamics (QCD) play a central role in the interpretation of experimental data. Arguably
the most important evolution equations for collider physics applications are the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) equations, which describe the evolution of a quark or gluon frag-
menting into hadrons, with only a single hadron identified at a time. In recent years, the study of
the correlations of energy flow within jets has come to play a central role at collider experiments,
necessitating an understanding of correlations, going beyond the standard DGLAP paradigm. In
this Letter we derive a general renormalization group equation describing the collinear dynamics
that account for correlations in the fragmentation. We compute the kernel of this evolution equa-
tion at next-to-leading order (NLO), where it involves the 1 3 splitting functions, and develop
techniques to solve it numerically. We show that our equation encompasses all previously-known
collinear evolution equations, namely DGLAP and the evolution of multi-hadron fragmentation
functions. As an application of our results, we consider the phenomenologically-relevant example
of energy flow on charged particles, computing the energy fraction in charged particles in e+e
hadrons at NNLO. Our results are an important step towards improving the understanding of the
collinear dynamics of jets, with broad applications in jet substructure, ranging from the study of
multi-hadron correlations, to the description of inclusive (sub)jet production, and the advancement
of modern parton showers.
Introduction.—Jets and their substructure play a cen-
tral role in modern collider experiments, both in searches
for beyond the Standard Model physics, as well as for
studying quantum chromodynamics (QCD) [1–3]. Due
to the confinement process, jets are complicated multi-
scale objects, formed by the fragmentation of an initial
energetic quark or gluon at short times, into a collimated
spray of hadrons at long times. Because of this multi-
scale nature, renormalization group equations (RGE)
that describe the scale evolution of jets play a crucial
role in the interpretation of nearly all experimental data.
The most celebrated evolution equation is the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [4–
6] equation, describing the evolution of a quark or gluon
fragmenting into hadrons, with a single hadron identified
at a time and all hadrons summed over. This equation
plays a central role in the description of all aspects of
jets, from perturbative calculations, to parton shower al-
gorithms, to the evolution of fragmentation functions.
Because of this, it has received significant theoretical at-
tention, and been computed to high orders [7–9].
Driven by the high energies, and exceptional resolution
of the detectors at the Large Hadron Collider (LHC),
there has been significant recent interest in understand-
ing the correlations in energy flow within jets, a field
known as jet substructure [1–3]. The theoretical descrip-
tion of such correlations requires an understanding of
the scale evolution of correlations in the fragmentation
process, giving rise to non-linear RGEs, and going be-
yond the standard DGLAP evolution equations. While
FIG. 1. A parton with momentum kfragments into an identi-
fied set of hadrons with momentum fraction PR, distinguished
by a specified quantum number (e.g. electric charge). The
scale evolution of this process is described by a non-linear
renormalization group evolution.
non-linear evolution equations for soft correlations have
existed for quite some time [10–15], similar non-linear
evolution equations incorporating correlations between
collinear partons are not known. Much like their soft
analogs, such non-linear collinear evolution equations will
also be essential for testing higher order collinear correc-
tions to next-generation parton showers [16–24].
In this Letter we derive a general evolution equation for
the fragmentation of collinear partons at next-to-leading
order (NLO), accounting for all correlations, which in-
volves for the first time the complete structure of the
13 splitting functions. We also show that our evolu-
tion equation can be reduced to the DGLAP equation,
arXiv:2210.10061v1 [hep-ph] 18 Oct 2022
2
i
<latexit sha1_base64="wVqNk9Mt++XFf0QikZQLqKr4YWk=">AAAB+3icbVDLTgIxFL2DL8QX6tJNIzFxRWbQRJdENy4hkUcCE9Ipd6Ch05m0HSMhfIFb/QJ3xq0f4wf4HxaYhYAnaXJyzr25pydIBNfGdb+d3Mbm1vZOfrewt39weFQ8PmnqOFUMGywWsWoHVKPgEhuGG4HtRCGNAoGtYHQ/81tPqDSP5aMZJ+hHdCB5yBk1VqrzXrHklt05yDrxMlKCDLVe8afbj1kaoTRMUK07npsYf0KV4UzgtNBNNSaUjegAO5ZKGqH2J/OgU3JhlT4JY2WfNGSu/t2Y0EjrcRTYyYiaoV71ZuJ/Xic14a0/4TJJDUq2OBSmgpiYzH5N+lwhM2JsCWWK26yEDamizNhulq48L6LaXrzVFtZJs1L2rsqV+nWpepc1lIczOIdL8OAGqvAANWgAA4QXeIU3Z+q8Ox/O52I052Q7p7AE5+sXavWVZw==</latexit>
i1
<latexit sha1_base64="YLwIcEe6eNnGgkou1jmRq0p1x4k=">AAAB/XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmVF+4B2KJk004ZmMkNyRyyl+AVu9QvciVu/xQ/wP0zbWdjWA4HDOfdyT06QSGHQdb+dldW19Y3N3FZ+e2d3b79wcFg3caoZr7FYxroZUMOlULyGAiVvJprTKJC8EQxuJn7jkWsjYvWAw4T7Ee0pEQpG0Ur3ouN1CkW35E5BlomXkSJkqHYKP+1uzNKIK2SSGtPy3AT9EdUomOTjfDs1PKFsQHu8ZamiETf+aBp1TE6t0iVhrO1TSKbq340RjYwZRoGdjCj2zaI3Ef/zWimGV/5IqCRFrtjsUJhKgjGZ/Jt0heYM5dASyrSwWQnrU00Z2nbmrjzNotpevMUWlkm9XPLOS+W7i2LlOmsoB8dwAmfgwSVU4BaqUAMGPXiBV3hznp1358P5nI2uONnOEczB+foFmxWWCw==</latexit>
i2
<latexit sha1_base64="/x2mAXhMvkbql69DakaNsf6h184=">AAAB/XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LLoxmVF+4B2KJk0bUMzmSG5I5ah+AVu9QvciVu/xQ/wP0zbWdjWA4HDOfdyT04QS2HQdb+dldW19Y3N3FZ+e2d3b79wcFg3UaIZr7FIRroZUMOlULyGAiVvxprTMJC8EQxvJn7jkWsjIvWAo5j7Ie0r0ROMopXuRafcKRTdkjsFWSZeRoqQodop/LS7EUtCrpBJakzLc2P0U6pRMMnH+XZieEzZkPZ5y1JFQ278dBp1TE6t0iW9SNunkEzVvxspDY0ZhYGdDCkOzKI3Ef/zWgn2rvxUqDhBrtjsUC+RBCMy+TfpCs0ZypEllGlhsxI2oJoytO3MXXmaRbW9eIstLJN6ueSdl8p3F8XKddZQDo7hBM7Ag0uowC1UoQYM+vACr/DmPDvvzofzORtdcbKdI5iD8/ULnKyWDA==</latexit>
im1
<latexit sha1_base64="ofaVq6CkBfPx9Ub9wY8Z14zTJXo=">AAACAXicbVDLTgIxFL2DL8QX6tJNIzFxI5kBE10S3bjERB4JTEindKCh7UzajpFMWPkFbvUL3Bm3fokf4H9YYBYCnqTJyTn35p6eIOZMG9f9dnJr6xubW/ntws7u3v5B8fCoqaNEEdogEY9UO8CaciZpwzDDaTtWFIuA01Ywup36rUeqNIvkgxnH1Bd4IFnICDZWarFeKi68Sa9YcsvuDGiVeBkpQYZ6r/jT7UckEVQawrHWHc+NjZ9iZRjhdFLoJprGmIzwgHYslVhQ7aezuBN0ZpU+CiNlnzRopv7dSLHQeiwCOymwGeplbyr+53USE177KZNxYqgk80NhwpGJ0PTvqM8UJYaPLcFEMZsVkSFWmBjb0MKVp3lU24u33MIqaVbKXrVcub8s1W6yhvJwAqdwDh5cQQ3uoA4NIDCCF3iFN+fZeXc+nM/5aM7Jdo5hAc7XL7U2l8U=</latexit>
im
<latexit sha1_base64="Q9SC/LbxT1rltKNyneHM8j0+T2k=">AAAB/3icbVDLTgIxFL2DL8QX6tJNIzFxRWbQRJdENy4xcYAEJqRTOtDQdiZtx0gmLPwCt/oF7oxbP8UP8D8sMAsBT9Lk5Jx7c09PmHCmjet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqCPVJzGPVDrGmnEnqG2Y4bSeKYhFy2gpHt1O/9UiVZrF8MOOEBgIPJIsYwcZKPutlYtIrV9yqOwNaJV5OKpCj0Sv/dPsxSQWVhnCsdcdzExNkWBlGOJ2UuqmmCSYjPKAdSyUWVAfZLOwEnVmlj6JY2ScNmql/NzIstB6L0E4KbIZ62ZuK/3md1ETXQcZkkhoqyfxQlHJkYjT9OeozRYnhY0swUcxmRWSIFSbG9rNw5Wke1fbiLbewSpq1qndRrd1fVuo3eUNFOIFTOAcPrqAOd9AAHwgweIFXeHOenXfnw/mcjxacfOcYFuB8/QLRypdT</latexit>
···
<latexit sha1_base64="8tRIflu+DAsXHTsjD+OW+CySdc8=">AAACAHicbVDLSgMxFM34rPVVdekmWARXZaYKuiy6cVnBPqAdSiaTaWMzyZDcEcvQjV/gVr/Anbj1T/wA/8O0nYVtPRA4nHMv9+QEieAGXPfbWVldW9/YLGwVt3d29/ZLB4dNo1JNWYMqoXQ7IIYJLlkDOAjWTjQjcSBYKxjeTPzWI9OGK3kPo4T5MelLHnFKwErNLg0VmF6p7FbcKfAy8XJSRjnqvdJPN1Q0jZkEKogxHc9NwM+IBk4FGxe7qWEJoUPSZx1LJYmZ8bNp2jE+tUqII6Xtk4Cn6t+NjMTGjOLATsYEBmbRm4j/eZ0Uois/4zJJgUk6OxSlAoPCk6/jkGtGQYwsIVRzmxXTAdGEgi1o7srTLKrtxVtsYZk0qxXvvFK9uyjXrvOGCugYnaAz5KFLVEO3qI4aiKIH9IJe0Zvz7Lw7H87nbHTFyXeO0Bycr19xXpep</latexit>
Ti1(x1)
<latexit sha1_base64="AacKIGiofQwkxqPeF+nQyAFz+ME=">AAACFnicbVDLSsNAFJ3UV62vqDvdDBahbkpSBV0W3bis0Be0IUwm03boZBJmJtISAn6GX+BWv8CduHXrB/gfTtMsbOuBgcM59865HC9iVCrL+jYKa+sbm1vF7dLO7t7+gXl41JZhLDBp4ZCFoushSRjlpKWoYqQbCYICj5GON76b+Z1HIiQNeVNNI+IEaMjpgGKktOSaJ0k/+yQRxE9h002oa6eViWtfpK5ZtqpWBrhK7JyUQY6Ga/70/RDHAeEKMyRlz7Yi5SRIKIoZSUv9WJII4TEakp6mHAVEOkkWn8JzrfhwEAr9uIKZ+ncjQYGU08DTkwFSI7nszcT/vF6sBjdOQnkUK8LxPGgQM6hCOCsE+lQQrNhUE4QF1bdCPEICYaVrW0iZzE/VvdjLLaySdq1qX1ZrD1fl+m3eUBGcgjNQATa4BnVwDxqgBTB4Ai/gFbwZz8a78WF8zkcLRr5zDBZgfP0C5fGf7A==</latexit>
Ti2(x2)
<latexit sha1_base64="4DnwMR1BbneP+O0jUas1o+y3WTg=">AAACFnicbVDLSsNAFJ3UV62vqDvdDBahbkoSBV0W3bis0Be0IUwmk3bo5MHMRFpCwM/wC9zqF7gTt279AP/DaZqFbT0wcDjn3jmX48aMCmkY31ppbX1jc6u8XdnZ3ds/0A+POiJKOCZtHLGI91wkCKMhaUsqGenFnKDAZaTrju9mfveRcEGjsCWnMbEDNAypTzGSSnL0k3SQf5Jy4mWw5aTUsbLaxLEuMkevGnUjB1wlZkGqoEDT0X8GXoSTgIQSMyRE3zRiaaeIS4oZySqDRJAY4TEakr6iIQqIsNM8PoPnSvGgH3H1Qglz9e9GigIhpoGrJgMkR2LZm4n/ef1E+jd2SsM4kSTE8yA/YVBGcFYI9CgnWLKpIghzqm6FeIQ4wlLVtpAymZ+qejGXW1glHatuXtath6tq47ZoqAxOwRmoARNcgwa4B03QBhg8gRfwCt60Z+1d+9A+56Mlrdg5BgvQvn4B6Sif7g==</latexit>
Tim(xm)
<latexit sha1_base64="3M3Z6svd69VGMMzx9Xn6Zo0lKNo=">AAACGnicbVDLSsNAFJ3UV62vqEtBBotQNyWpgi6LblxW6AvaECaTSTt08mBmIi0hOz/DL3CrX+BO3LrxA/wPJ2kWtvXAMIdz7ovjRIwKaRjfWmltfWNzq7xd2dnd2z/QD4+6Iow5Jh0cspD3HSQIowHpSCoZ6UecIN9hpOdM7jK/90i4oGHQlrOIWD4aBdSjGEkl2fppMsyHJJy4KWzbCbUTP01r0+y7SG29atSNHHCVmAWpggItW/8ZuiGOfRJIzJAQA9OIpJUgLilmJK0MY0EihCdoRAaKBsgnwkryE1J4rhQXeiFXL5AwV/92JMgXYuY7qtJHciyWvUz8zxvE0ruxEhpEsSQBni/yYgZlCLNQoEs5wZLNFEGYU3UrxGPEEZYquoUt0/mpKhdzOYVV0m3Uzct64+Gq2rwtEiqDE3AGasAE16AJ7kELdAAGT+AFvII37Vl71z60z3lpSSt6jsECtK9ffxiifA==</latexit>
Ki!i1i2...im
<latexit sha1_base64="T5PDj1QKubYfiBZGUIoGlalS07o=">AAACF3icbVDLSsNAFL2pr1pfUZfdDBbBVUmqoMuiG8FNBdsKbQiT6aQdOpOEmYlYQhd+hl/gVr/Anbh16Qf4H07bLGzrhQuHc+7h3nuChDOlHefbKqysrq1vFDdLW9s7u3v2/kFLxakktEliHsv7ACvKWUSbmmlO7xNJsQg4bQfDq4nefqBSsTi606OEegL3IxYygrWhfLt842esq2PEfNd0rduLtTIgE+Oxb1ecqjMttAzcHFQgr4Zv/xg7SQWNNOFYqY7rJNrLsNSMcDoudVNFE0yGuE87BkZYUOVl0yfG6NgwPRTG0nSk0ZT968iwUGokAjMpsB6oRW1C/qd1Uh1eeBmLklTTiMwWhSlH5ulJIqjHJCWajwzARDJzKyIDLDHRJre5LY+zU00u7mIKy6BVq7qn1drtWaV+mSdUhDIcwQm4cA51uIYGNIHAE7zAK7xZz9a79WF9zkYLVu45hLmyvn4BMt+gEw==</latexit>
FIG. 2. Perturbative evolution is described by the splitting of
a single parton, i, into mpartons, each of whose momentum
fractions are tracked.
as well as the N-hadron fragmentation functions.
There are many applications of our evolution equa-
tions for jet substructure at the LHC. A key applica-
tion is the study of observables on tracks (charged parti-
cles) [25, 26], which will enable the measurement of more
sophisticated jet substructure observables. In particu-
lar, the use of tracks has played an important role in the
study of the collinear limit of energy correlators [27–29]
using CMS Open Data [30, 31]. This same equation can
be used to describe (sub)jet production for small values
of the radius, e.g. to describe the leading (sub)jet re-
quires knowledge about the other (sub)jets [32, 33]. We
therefore develop algorithms to efficiently solve our equa-
tions numerically for phenomenological applications, and
illustrate their use in a physical observable, the energy
fraction in charged hadrons in an e+ecollision.
The Master Equation for Collinear Evolution.—We de-
rive the general collinear evolution equation by studying
the renormalization of a universal object referred to as a
“track function” [25, 26]. In light-cone gauge, it is defined
for quarks as [25, 26]
Tq(x) =Zdy+dd2yeiky+/2X
X
δxP
R
k
1
2Nc
trγ
2h0|ψ(y+,0, y)|XihX|¯
ψ(0)|0i,(1)
with a similar definition for gluons. Here PRdenotes the
momentum of a subset RXof hadrons, as illustrated
in Fig. 1. The RGE of these universal non-perturbative
quantities tracks the energy fractions of all partons in
a splitting, as is shown schematically in Fig. 2, leading
to a complicated non-linear evolution equation, whereas
DGLAP considers the momentum fraction of one parton
produced in a splitting at the time, summing over them.
In [34, 35], it was shown how to derive RG equations
for the first six moments of the track functions. In this
Letter, we will extend this to derive the complete RGE
at NLO.
Considering the perturbative splitting illustrated in
Fig. 2, at NLO, we can have a splitting into at most
three-partons. The general form of the evolution equa-
tion for the track functions is therefore
d
d ln µ2Ti(x) = ashK(0)
iiTi(x) + K(0)
ii1i2Ti1Ti2(x)i
+a2
shK(1)
iiTi(x) + K(1)
ii1i2Ti1Ti2(x)
+K(1)
ii1i2i3Ti1Ti2Ti3(x)i+O(a3
s),
(2)
where as=αs/(4π) is the coupling and the convolutions
involving the evolution kernels Kare written explicitly
below in Eq. (3).
Since track functions are scaleless in dimensional regu-
larization, to derive their evolution equations, we follow
the approach of [34, 35] of computing an auxiliary ob-
servable which introduces a scale. We take this to be
a jet function differential in both the energy fraction of
charged particles, and the mass of all particles [36]. Af-
ter renormalization in the mass, the remaining poles are
associated with the track function renormalization.
To derive the evolution equations, one must integrate
out the angular variables appearing in the 1 3 split-
ting function [37]. The derivation of IR finite evolution
equations then requires the cancellation poles between
the one-loop 1 2 [38, 39] and tree-level 1 3 [38, 39]
splitting functions. This is non-trivial as they can be
overlapping so that standard plus distributions cannot
be used. To overcome this, we use sector decomposition
[40–42], and identify a convenient set of variables which
disentangle the divergences.
We have computed the evolution kernels in both N=
4 super-Yang-Mills (SYM) and for all partonic channels
in QCD. The QCD kernels are provided in an attached
notebook. We will use the simpler N= 4 SYM kernels
to illustrate the form of the track function evolution,
d
d ln µ2T(x) = 25ζ3a2T(x)+Z1
0
dx1Z1
0
dx2Z1
0
dzT(x1)T(x2)δxx1
1
1 + zx2
z
1 + z(3)
×4a1
z+
+ 16a2ζ21
z+
+2 ln2(1+z)ln zln(1+z)
z
摘要:

CollinearPartonDynamicsBeyondDGLAPHaoChen,1MaxJaarsma,2,3YibeiLi,1IanMoult,4WouterJ.Waalewijn,2,3andHuaXingZhu11ZhejiangInstituteofModernPhysics,DepartmentofPhysics,ZhejiangUniversity,Hangzhou,310027,China2Nikhef,TheoryGroup,SciencePark105,1098XG,Amsterdam,TheNetherlands3InstituteforTheoreticalPhysi...

收起<<
Collinear Parton Dynamics Beyond DGLAP Hao Chen1Max Jaarsma2 3Yibei Li1Ian Moult4Wouter J. Waalewijn2 3and Hua Xing Zhu1 1Zhejiang Institute of Modern Physics Department of Physics Zhejiang University Hangzhou 310027 China.pdf

共6页,预览2页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:6 页 大小:4.21MB 格式:PDF 时间:2025-04-29

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 6
客服
关注