研机器学习5-正则化和稀疏学习-fb

VIP免费
2025-01-13 0 0 2.95MB 97 页 5.9玖币
侵权投诉
机器学习
Machine Learning
北京航空航天大学计算机学院
School of Computer Science and Engineering, Beihang University
黄 迪 刘庆杰 陈佳鑫
2024年秋季学期
Fall 2024
部分内容来源于C. BishopA. NG等人的课程以及互联网资源
课前回顾
概述
C. CortesV. Vapnik (1995年提出)
支持向量机是基于统计学习理论(Statistical Learning Theory,
SLT)发展起来的一种机器学习的方法。
统计学习理论主要创立者是Vladimir N. Vapnik
概述
V. Vapnik对于统计机器学习的贡献
1968VapnikChervonenkis提出了VC熵和VC
维的概念,这些是统计学习理论的核心概念。同时,
他们发现了泛函空间的大数定理,得到了关于收敛
速度的非渐进界的主要结论。
1974VapnikChervonenkis提出了结构风险最
小化归纳原则。
1989VapnikChervonenkis发现了经验风险最
小化归纳原则和最大似然方法一致性的充分必要条
件,完成了对经验风险最小化归纳推理的分析。
90年代中期,有限样本情况下的机器学习理论研究
逐渐成熟起来,形成了较完善的理论体系统计学
习理论。
线性分类模型
两类样本的线性分类问题
支持向量机
SVM从线性可分情况下的最优分类面发展而来。
最优分类面就是要求分类线不但能将两类正确分开(训练错误率为0),且
使分类间隔最大。SVM考虑寻找一个满足分类要求的超平面,并使训
练集中的点距离分类面尽可能的,也就是寻找一个分类面使它两侧的
空白区域(Margin)最大
支持向量机
线性支持向量机
样本集
分类器
支持向量机
线性支持向量机
样本集任意一点 到分类面(满足 )的距离
优化wb使Margin最大
对于离超平面最近的点
那么对于所有点满足
求解复杂
对于决策超平面的标准表示
Canonical Representation
优化求解
原优化问题转化为二次规划问题











拉格朗日乘子
使用拉格朗日乘子法将上述二次规划问题转化为等价的对偶
问题进行简化求解,拉格朗日函数可以表示为:
支持向量机
优化求解
分别对变量求导
带入拉格朗日函数,得到易于求解的对偶形式







 



 

由于存在不等式约束,需验证最优解是否满足KKT (Karush-
Kuhn-Tucker) 条件,才可以确定对偶问题是否等价于原问题
支持向量机
摘要:

机器学习MachineLearning北京航空航天大学计算机学院SchoolofComputerScienceandEngineering,BeihangUniversity黄迪刘庆杰陈佳豠2024年秋季学期Fall2024部分内容来源于C.Bishop和A.NG等人的课程以及互联网资源课前回顾概述⚫C.Cortes和V.Vapnik(1995年提出)支持向量机是基于统计学习理论(StatisticalLearningTheory,SLT)发展起来的一种机器学习的方法。统计学习理论主要创立者是VladimirN.Vapnik。概述⚫V.Vapnik对于统计机器学习的贡献1968年,Vapnik...

展开>> 收起<<
研机器学习5-正则化和稀疏学习-fb.pdf

共97页,预览20页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:计算机 价格:5.9玖币 属性:97 页 大小:2.95MB 格式:PDF 时间:2025-01-13

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 97
客服
关注