DOLPH Diffusion Models for Phase Retrieval Shirin Shoushtariy Jiaming Liuy and Ulugbek S. Kamilov

2025-08-18 2 0 3.56MB 9 页 10玖币
侵权投诉
DOLPH: Diffusion Models for Phase Retrieval
Shirin Shoushtari, Jiaming Liu, and Ulugbek S. Kamilov*
Computational Imaging Group (CIG), Washington University in St. Louis, MO, USA
These authors contributed equally.
Abstract
Phase retrieval refers to the problem of recovering an image from the magnitudes of its
complex-valued linear measurements. Since the problem is ill-posed, the recovery requires
prior knowledge on the unknown image. We present DOLPH as a new deep model-based
architecture for phase retrieval that integrates an image prior specified using a diffusion model
with a nonconvex data-fidelity term for phase retrieval. Diffusion models are a recent class of
deep generative models that are relatively easy to train due to their implementation as image
denoisers. DOLPH reconstructs high-quality solutions by alternating data-consistency updates
with the sampling step of a diffusion model. Our numerical results show the robustness of DOLPH
to noise and its ability to generate several candidate solutions given a set of measurements.
1 Introduction
Phase retrieval (PR) refers to the problem of recovering phase information from noisy amplitude-only
measurements. In the context of computational imaging, it is often formulated as the recovery of an
unknown image xfrom the measurements
y=|Ax|+e,(1)
where
ACm×n
is the measurement matrix,
|·|
is the element-wise absolute value, and
e
is the noise.
The popularity of PR stems from its broad applicability in microscopy [1], optics [2], astronomical
imaging [3], and inverse scattering [4]. PR is known to be challenging due to the nonlinearity of
the measurements and ill-posedness of the corresponding inverse problem, necessitating algorithms
that can efficiently integrate image priors. The literature on PR is vast (see the review [5]) with a
large number of existing methods [6
12]. Nonetheless, there is a strong interest in the development
of PR methods that can use modern deep learning (DL) priors.
The focus of this paper is to design and validate a PR algorithm that can leverage an image prior
specified by a diffusion model. Diffusion models are a recent class of DL methods for generating
high-quality images using pre-trained image denoisers [13, 14]. The image denoiser in diffusion
models can be interpreted as the gradient of the log of the image probability density function,
leading to its view as a compact representation of an image distribution. This interpretation has
led to the use of diffusion models as image priors in various imaging inverse problems [15
18]. It
*This material is based upon work supported by the NSF CAREER award under grant CCF-2043134.
1
arXiv:2211.00529v2 [eess.IV] 2 Nov 2022
c
Sampling from DDPM Gradient Correction Step
(a)
(b)
<latexit sha1_base64="djekvXwSB4KF96lKAP+DK3bGNPE=">AAACKHicbVDLSgMxFM34rPU16tJNsAh1YZmRou4sunFZwT6gM5ZMmrahmQfJHbGM8zlu/BU3Iop065eYabuorQdCDufcy733eJHgCixrZCwtr6yurec28ptb2zu75t5+XYWxpKxGQxHKpkcUEzxgNeAgWDOSjPieYA1vcJP5jUcmFQ+DexhGzPVJL+BdTgloqW1eRe3E8ULRUUNff4kDfQYkTXFxVn1KHxI4tdPnORFO2mbBKllj4EViT0kBTVFtmx9OJ6SxzwKggijVsq0I3IRI4FSwNO/EikWEDkiPtTQNiM+Um4wPTfGxVjq4G0r9AsBjdbYjIb7KttOVPoG+mvcy8T+vFUP30k14EMXAAjoZ1I0FhhBnqeEOl4yCGGpCqOR6V0z7RBIKOtu8DsGeP3mR1M9K9nmpfFcuVK6nceTQITpCRWSjC1RBt6iKaoiiF/SGPtGX8Wq8G9/GaFK6ZEx7DtAfGD+/wL2o2w==</latexit>
p(xt1|xt)
<latexit sha1_base64="l8Wg57QcOytsWBnhoPm4+YtElIw=">AAACFHicbVC7TsMwFHV4lvIKMLJYVEhFiCpBFTBWsDAWiT6kNlSO47RWnTjYDqIK+QgWfoWFAYRYGdj4G5w2A7QcyfLROffq3nvciFGpLOvbmJtfWFxaLqwUV9fWNzbNre2m5LHApIE546LtIkkYDUlDUcVIOxIEBS4jLXd4kfmtOyIk5eG1GkXECVA/pD7FSGmpZx7ewnLX5cyTo0B/yX16k6j0YUY6stODnlmyKtYYcJbYOSmBHPWe+dX1OI4DEirMkJQd24qUkyChKGYkLXZjSSKEh6hPOpqGKCDSScZHpXBfKx70udAvVHCs/u5IUCCzDXVlgNRATnuZ+J/XiZV/5iQ0jGJFQjwZ5McMKg6zhKBHBcGKjTRBWFC9K8QDJBBWOseiDsGePnmWNI8r9kmlelUt1c7zOApgF+yBMrDBKaiBS1AHDYDBI3gGr+DNeDJejHfjY1I6Z+Q9O+APjM8fdiafuA==</latexit>
q(xt|xt1)
<latexit sha1_base64="fzqb1Y5SKrSwzxR/FGaFMv9VtJg=">AAAB+3icbVA7T8MwGHTKq5RXKCOLRYXEVCWoAsYKFsYi9SW1oXIcp7Xq2JHtoFZR/goLAwix8kfY+Dc4bQZoOcny6e775PP5MaNKO863VdrY3NreKe9W9vYPDo/s42pXiURi0sGCCdn3kSKMctLRVDPSjyVBkc9Iz5/e5X7viUhFBW/reUy8CI05DSlG2kgjuzr0BQvUPDJXOsse03Y2smtO3VkArhO3IDVQoDWyv4aBwElEuMYMKTVwnVh7KZKaYkayyjBRJEZ4isZkYChHEVFeusiewXOjBDAU0hyu4UL9vZGiSOXxzGSE9EStern4nzdIdHjjpZTHiSYcLx8KEwa1gHkRMKCSYM3mhiAsqckK8QRJhLWpq2JKcFe/vE66l3X3qt54aNSat0UdZXAKzsAFcME1aIJ70AIdgMEMPINX8GZl1ov1bn0sR0tWsXMC/sD6/AECpJUV</latexit>
xT
<latexit sha1_base64="9TU5CewLwBjzAlknZAPI5rhafSc=">AAAB+XicbVC7TsMwFHXKq5RXgJElokJiqhJUAWMFC2OR6ENqQ+U4TmvVsSP7pqKK+icsDCDEyp+w8Tc4bQZoOZLlo3PulY9PkHCmwXW/rdLa+sbmVnm7srO7t39gHx61tUwVoS0iuVTdAGvKmaAtYMBpN1EUxwGnnWB8m/udCVWaSfEA04T6MR4KFjGCwUgD2+4Hkod6Gpsre5o9wsCuujV3DmeVeAWpogLNgf3VDyVJYyqAcKx1z3MT8DOsgBFOZ5V+qmmCyRgPac9QgWOq/WyefOacGSV0IqnMEeDM1d8bGY51Hs5MxhhGetnLxf+8XgrRtZ8xkaRABVk8FKXcAenkNTghU5QAnxqCiWImq0NGWGECpqyKKcFb/vIqaV/UvMta/b5ebdwUdZTRCTpF58hDV6iB7lATtRBBE/SMXtGblVkv1rv1sRgtWcXOMfoD6/MHYtaUKQ==</latexit>
xt
<latexit sha1_base64="TDssSHqCtWaSdPrQ5sbdOP5pA20=">AAAB+3icbVC7TsMwFL0pr1JeoYwsFhUSU5UgBIwVLIxFog+pDZXjuK1Vx4lsB7WK8issDCDEyo+w8Tc4bQZoOZLlo3PulY+PH3OmtON8W6W19Y3NrfJ2ZWd3b//APqy2VZRIQlsk4pHs+lhRzgRtaaY57caS4tDntONPbnO/80SlYpF40LOYeiEeCTZkBGsjDexq3494oGahudJp9pg62cCuOXVnDrRK3ILUoEBzYH/1g4gkIRWacKxUz3Vi7aVYakY4zSr9RNEYkwke0Z6hAodUeek8e4ZOjRKgYSTNERrN1d8bKQ5VHs9MhliP1bKXi/95vUQPr72UiTjRVJDFQ8OEIx2hvAgUMEmJ5jNDMJHMZEVkjCUm2tRVMSW4y19eJe3zuntZv7i/qDVuijrKcAwncAYuXEED7qAJLSAwhWd4hTcrs16sd+tjMVqyip0j+APr8wfL4ZTx</latexit>
x0
<latexit sha1_base64="N8lJ15xdhd49rQrl0eK8zfGrnVI=">AAACQnicbVDLTgIxFO3gC/GFunTTSExwIZkxRF0S3bjERB6GAdIpBRo6j7R3jDjOt7nxC9z5AW5caIxbFxaYBQInaXpyzj3p7XECwRWY5puRWlpeWV1Lr2c2Nre2d7K7e1Xlh5KyCvWFL+sOUUxwj1WAg2D1QDLiOoLVnMHVyK/dM6m4793CMGBNl/Q83uWUgJba2Tvb8UVHDV19RY9xK4ITK8a24i4O2tG0aUOfAYljnF8UeZoWH+IWHLezObNgjoHniZWQHEpQbmdf7Y5PQ5d5QAVRqmGZATQjIoFTweKMHSoWEDogPdbQ1CMuU81oXEGMj7TSwV1f6uMBHqvTiYi4arSdnnQJ9NWsNxIXeY0QuhfNiHtBCMyjk4e6ocDg41GfuMMloyCGmhAqud4V0z6RhIJuPaNLsGa/PE+qpwXrrFC8KeZKl0kdaXSADlEeWegcldA1KqMKougZvaNP9GW8GB/Gt/EzGU0ZSWYf/YPx+wfZeLPz</latexit>
zt1p(zt1|xt)
<latexit sha1_base64="bnexyB06YATzwx3W416sbFLxmAM=">AAAB/XicbVA7T8MwGHR4lvIKj43FokJioUpQBYwVLIxFog+pDZXjOK1Vx45sB1GiiL/CwgBCrPwPNv4NTpsBWk6yfLr7Pvl8fsyo0o7zbS0sLi2vrJbWyusbm1vb9s5uS4lEYtLEggnZ8ZEijHLS1FQz0oklQZHPSNsfXeV++55IRQW/1eOYeBEacBpSjLSR+vZ+zxcsUOPIXOlDdpfqEzfr2xWn6kwA54lbkAoo0OjbX71A4CQiXGOGlOq6Tqy9FElNMSNZuZcoEiM8QgPSNZSjiCgvnaTP4JFRAhgKaQ7XcKL+3khRpPKAZjJCeqhmvVz8z+smOrzwUsrjRBOOpw+FCYNawLwKGFBJsGZjQxCW1GSFeIgkwtoUVjYluLNfniet06p7Vq3d1Cr1y6KOEjgAh+AYuOAc1ME1aIAmwOARPINX8GY9WS/Wu/UxHV2wip098AfW5w8bQpWn</latexit>
xt1
<latexit sha1_base64="9TU5CewLwBjzAlknZAPI5rhafSc=">AAAB+XicbVC7TsMwFHXKq5RXgJElokJiqhJUAWMFC2OR6ENqQ+U4TmvVsSP7pqKK+icsDCDEyp+w8Tc4bQZoOZLlo3PulY9PkHCmwXW/rdLa+sbmVnm7srO7t39gHx61tUwVoS0iuVTdAGvKmaAtYMBpN1EUxwGnnWB8m/udCVWaSfEA04T6MR4KFjGCwUgD2+4Hkod6Gpsre5o9wsCuujV3DmeVeAWpogLNgf3VDyVJYyqAcKx1z3MT8DOsgBFOZ5V+qmmCyRgPac9QgWOq/WyefOacGSV0IqnMEeDM1d8bGY51Hs5MxhhGetnLxf+8XgrRtZ8xkaRABVk8FKXcAenkNTghU5QAnxqCiWImq0NGWGECpqyKKcFb/vIqaV/UvMta/b5ebdwUdZTRCTpF58hDV6iB7lATtRBBE/SMXtGblVkv1rv1sRgtWcXOMfoD6/MHYtaUKQ==</latexit>
xt
<latexit sha1_base64="fzqb1Y5SKrSwzxR/FGaFMv9VtJg=">AAAB+3icbVA7T8MwGHTKq5RXKCOLRYXEVCWoAsYKFsYi9SW1oXIcp7Xq2JHtoFZR/goLAwix8kfY+Dc4bQZoOcny6e775PP5MaNKO863VdrY3NreKe9W9vYPDo/s42pXiURi0sGCCdn3kSKMctLRVDPSjyVBkc9Iz5/e5X7viUhFBW/reUy8CI05DSlG2kgjuzr0BQvUPDJXOsse03Y2smtO3VkArhO3IDVQoDWyv4aBwElEuMYMKTVwnVh7KZKaYkayyjBRJEZ4isZkYChHEVFeusiewXOjBDAU0hyu4UL9vZGiSOXxzGSE9EStern4nzdIdHjjpZTHiSYcLx8KEwa1gHkRMKCSYM3mhiAsqckK8QRJhLWpq2JKcFe/vE66l3X3qt54aNSat0UdZXAKzsAFcME1aIJ70AIdgMEMPINX8GZl1ov1bn0sR0tWsXMC/sD6/AECpJUV</latexit>
xT
<latexit sha1_base64="TDssSHqCtWaSdPrQ5sbdOP5pA20=">AAAB+3icbVC7TsMwFL0pr1JeoYwsFhUSU5UgBIwVLIxFog+pDZXjuK1Vx4lsB7WK8issDCDEyo+w8Tc4bQZoOZLlo3PulY+PH3OmtON8W6W19Y3NrfJ2ZWd3b//APqy2VZRIQlsk4pHs+lhRzgRtaaY57caS4tDntONPbnO/80SlYpF40LOYeiEeCTZkBGsjDexq3494oGahudJp9pg62cCuOXVnDrRK3ILUoEBzYH/1g4gkIRWacKxUz3Vi7aVYakY4zSr9RNEYkwke0Z6hAodUeek8e4ZOjRKgYSTNERrN1d8bKQ5VHs9MhliP1bKXi/95vUQPr72UiTjRVJDFQ8OEIx2hvAgUMEmJ5jNDMJHMZEVkjCUm2tRVMSW4y19eJe3zuntZv7i/qDVuijrKcAwncAYuXEED7qAJLSAwhWd4hTcrs16sd+tjMVqyip0j+APr8wfL4ZTx</latexit>
x0
<latexit sha1_base64="6WlTOjfogAPwHvVN3ADDp1Kodfo=">AAACJ3icbVDLSgMxFM34rPU16tJNsAh10TIjRV1J0Y3LCvYBnVrupGkbmswMSUaoQ//Gjb/iRlARXfonZtoutO2FkMM553LvPX7EmdKO820tLa+srq1nNrKbW9s7u/befk2FsSS0SkIeyoYPinIW0KpmmtNGJCkIn9O6P7hO9foDlYqFwZ0eRrQloBewLiOgDdW2Lz0/5B01FOZLHkf3iS64I1zAXg+EAOxFIDUDjnv5RcaTtp1zis648DxwpyCHplVp229eJySxoIEmHJRquk6kW0k6hXA6ynqxohGQAfRo08AABFWtZHznCB8bpoO7oTQv0HjM/u1IQKh0Q+MUoPtqVkvJRVoz1t2LVsKCKNY0IJNB3ZhjHeI0NNxhkhLNhwYAkczsikkfJBBtos2aENzZk+dB7bTonhVLt6Vc+WoaRwYdoiOURy46R2V0gyqoigh6Qi/oHX1Yz9ar9Wl9TaxL1rTnAP0r6+cX1MKmhw==</latexit>
zt1@g(zt1)
Figure 1: (a) Illustration of the denoising diffusion probabilistic model (DDPM) Markov chain that
relates the distribution of high-quality images with that of the Gaussian noise. (b) DOLPH uses a
pre-trained DDPM for recovering images from amplitude measurements. DOLPH can be viewed as a
modified reverse diffusion process that has a gradient correction step to ensure consistency with the
measured amplitudes.
is also worth noting the connection between use of diffusion models in inverse problems and the
plug-and-play priors (PnP) framework, which also uses image denoisers as image priors [19–21].
In this work, we present
d
iffusion m
o
de
l
s for
ph
ase retrieval (DOLPH) as a new method for using
diffusion models as image priors for solving PR problems of form
(1)
. DOLPH combines the
sampling procedure in diffusion models with the data-consistency updates ensuring that the predicted
amplitudes match the measured ones in
y
. Our numerical results on phase retrieval from coded
diffraction patters (CDP) [22] show that DOLPH can generate realistic looking images from severely
noisy measurements, where the traditional approaches lead to overly smooth images.
2 Proposed Method
DOLPH builds on the sampling process of diffusion models to make it applicable to the problem
in eq.
(1)
. The sampling process uses a denoising convolutional neural network (CNN) pre-
trained using the denoising diffusion probabilistic models (DDPM) framework [13, 15]. DOLPH then
uses the pre-trained CNN denoiser to generate samples consistent with a given set of amplitude
measurements.
2.1 Denoising diffusion probabilistic models
As illustrated in Figure 1(a), DDPM consists of two Markov processes: the fixed forward process and
the learning-based reverse process. The forward process consists of
T1
steps, where each step
adds a Gaussian noise with a pre-designated variance, so that the at step
T
the statistical distribution
of data corresponds to the standard Gaussian distribution. Each step of the forward process can be
expressed as
q(xt|xt1):=N(xt;p1βtxt1, βtI),(2)
where
N(x;µ,Σ)
denotes a Gaussian probability density function with the mean vector
µ
and the
covariance matrix
Σ
. The vectors
x1,··· ,xT
are the latent variables that have the same dimensions
2
摘要:

DOLPH:DiffusionModelsforPhaseRetrievalShirinShoushtariy,JiamingLiuy,andUlugbekS.Kamilov*ComputationalImagingGroup(CIG),WashingtonUniversityinSt.Louis,MO,USAyTheseauthorscontributedequally.AbstractPhaseretrievalreferstotheproblemofrecoveringanimagefromthemagnitudesofitscomplex-valuedlinearmeasurement...

展开>> 收起<<
DOLPH Diffusion Models for Phase Retrieval Shirin Shoushtariy Jiaming Liuy and Ulugbek S. Kamilov.pdf

共9页,预览2页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:图书资源 价格:10玖币 属性:9 页 大小:3.56MB 格式:PDF 时间:2025-08-18

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 9
客服
关注