
Article
Revealing the short-range structure of the
”mirror nuclei” 3H and 3He
S. Li1,2, R. Cruz-Torres3,2, N. Santiesteban1,3, Z. H. Ye4,5D. Abrams6, S. Alsalmi7,41 ,
D. Androic8, K. Aniol9, J. Arrington2,5,∗, T. Averett10 , C. Ayerbe Gayoso10 , J. Bane11 ,
S. Barcus10, J. Barrow11, A. Beck3, V. Bellini12, H. Bhatt13 , D. Bhetuwal13, D. Biswas14,
D. Bulumulla15, A. Camsonne16 , J. Castellanos17, J. Chen10, J-P. Chen16 , D. Chrisman18 ,
M. E. Christy14,16, C. Clarke19 , S. Covrig16, K. Craycraft11, D. Day6, D. Dutta13 , E. Fuchey20,
C. Gal6, F. Garibaldi21, T. N. Gautam14, T. Gogami22 , J. Gomez16, P. Gu `
eye14,18,
A. Habarakada14, T. J. Hague7, J. O. Hansen16, F. Hauenstein15 , W. Henry23 ,
D. W. Higinbotham16 , R. J. Holt5, C. Hyde15, T. Itabashi22, M. Kaneta22 , A. Karki13 ,
A. T. Katramatou7, C. E. Keppel16, M. Khachatryan15, V. Khachatryan19, P. M. King24 ,
I. Korover25 , L. Kurbany1, T. Kutz19 , N. Lashley-Colthirst14 , W. B. Li10, H. Liu26 , N. Liyanage6,
E. Long1, J. Mammei27, P. Markowitz17, R. E. McClellan16, F. Meddi21, D. Meekins16,
S. Mey-Tal Beck3, R. Michaels16, M. Mihoviloviˇ
c28,29,30, A. Moyer31, S. Nagao22, V. Nelyubin6,
D. Nguyen6, M. Nycz7, M. Olson32 , L. Ou3, V. Owen10, C. Palatchi6, B. Pandey14 ,
A. Papadopoulou3, S. Park19, S. Paul10, T. Petkovic8, R. Pomatsalyuk33, S. Premathilake6,
V. Punjabi34 , R. D. Ransome35 , P. E. Reimer5, J. Reinhold17, S. Riordan5, J. Roche24,
V. M. Rodriguez36 , A. Schmidt3, B. Schmookler3, E. P. Segarra3, A. Shahinyan37, K. Slifer1,
P. Solvignon1, S. ˇ
Sirca29,28, T. Su7, R. Suleiman16, H. Szumila-Vance16 , L. Tang16 , Y. Tian38,
W. Tireman39, F. Tortorici12 , Y. Toyama22, K. Uehara22, G. M. Urciuoli21, D. Votaw18 ,
J. Williamson40, B. Wojtsekhowski16 , S. Wood16 , J. Zhang6, X. Zheng6
When protons and neutrons (nucleons) are bound into atomic nuclei, they are close
enough together to feel significant attraction, or repulsion, from the strong,
short-distance part of the nucleon-nucleon interaction. These strong interactions lead
to hard collisions between nucleons, generating pairs of highly-energetic nucleons
referred to as short-range correlations (SRCs). SRCs are an important but relatively
poorly understood part of nuclear structure1–3 and mapping out the strength and
isospin structure (neutron-proton vs proton-proton pairs) of these virtual excitations is
thus critical input for modeling a range of nuclear, particle, and astrophysics
measurements 3–5. Hitherto measurements used two-nucleon knockout or
“triple-coincidence” reactions to measure the relative contribution of np- and pp-SRCs
by knocking out a proton from the SRC and detecting its partner nucleon (proton or
neutron). These measurements6–8 show that SRCs are almost exclusively np pairs, but
had limited statistics and required large model-dependent final-state interaction (FSI)
corrections. We report on the first measurement using inclusive scattering from the
mirror nuclei 3H and 3He to extract the np/pp ratio of SRCs in the A=3 system. We
obtain a measure of the np/pp SRC ratio that is an order of magnitude more precise
than previous experiments, and find a dramatic deviation from the near-total np
dominance observed in heavy nuclei. This result implies an unexpected structure in
the high-momentum wavefunction for 3He and 3H. Understanding these results will
improve our understanding of the short-range part of the N-N interaction.
1University of New Hampshire, Durham, New Hampshire 03824, USA 2Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 3Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, USA 4Tsinghua University, Beijing, China 5Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
6University of Virginia, Charlottesville, Virginia 22904, USA 7Kent State University, Kent, Ohio 44240, USA 8University of Zagreb, Zagreb, Croatia 9California State University,
Los Angeles, California 90032, USA 10 The College of William and Mary, Williamsburg, Virginia 23185, USA 11 University of Tennessee, Knoxville, Tennessee 37966, USA
12 INFN Sezione di Catania, Italy 13 Mississippi State University, Mississippi State, Mississippi 39762, USA 14 Hampton University, Hampton, Virginia 23669, USA 15 Old
Dominion University, Norfolk, Virginia 23529, USA 16 Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA 17 Florida International University,
Miami, Florida 33199, USA 18 Michigan State University, East Lansing, Michigan 48824, USA 19 Stony Brook, State University of New York, New York 11794, USA 20 University
of Connecticut, Storrs, Connecticut 06269, USA 21 INFN, Rome, Italy 22 Tohoku University, Sendai, Japan 23 Temple University, Philadelphia, Pennsylvania 19122, USA 24 Ohio
University, Athens, Ohio 45701, USA 25 Nuclear Research Center -Negev, Beer-Sheva, Israel 26 Columbia University, New York, New York 10027, USA 27 University of
Manitoba, Winnipeg, MB R3T 2N2, Canada 28 Joˇ
zef Stefan Institute, 1000 Ljubljana, Slovenia 29 Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana,
Slovenia 30 Institut f ¨
ur Kernphysik, Johannes Gutenberg-Universit¨
at Mainz, DE-55128 Mainz, Germany 31 Christopher Newport University, Newport News, Virginia 23606, USA
32 Saint Norbert College, De Pere, Wisconsin 54115, USA 33 Institute of Physics and Technology, Kharkov, Ukraine 34 Norfolk State University, Norfolk, Virginia 23529, USA
35 Rutgers University, New Brunswick, New Jersey 08854, USA 36 Divisi´
on de Ciencias y Tecnolog´
ıa, Universidad Ana G. M´
endez, Recinto de Cupey, San Juan 00926, Puerto
Rico 37 Yerevan Physics Institute, Yerevan, Armenia 38 Syracuse University, Syracuse, New York 13244, USA 39 Northern Michigan University, Marquette, Michigan 49855,
USA 40 University of Glasgow, Glasgow, G12 8QQ Scotland, UK 41 King Saud University, Riyadh 11451, Kingdom of Saudi Arabia * email:JArrington@lbl.gov
1
arXiv:2210.04189v1 [nucl-ex] 9 Oct 2022