机器学习-黄迪2 线性回归

VIP免费
2025-01-13 0 0 4.07MB 86 页 5.9玖币
侵权投诉
机器学习
Machine Learning
北京航空航天大学计算机学院
School of Computer Science and Engineering, Beihang University
黄 迪 刘庆杰
2018年秋季学期
Fall 2018
部分内容来源于C. BishopA. NG等人的课程以及互联网资源
第一章:机器学习概述()
Chapter 1: Introduction to Machine Learning
训练和测试
训练集
(观测)
通用数据集
(非观测)
测试集
(非观测)
数据获取 实际运用
Training is the process of making the system able to learn.
No free lunch rule:
Training set and testing set come from the same distribution
Need to make some assumptions or bias
训练和测试
There are several factors affecting the performance:
Types of training provided
The form and extent of any initial background knowledge
The type of feedback provided
The learning algorithms used
Two important factors:
Modeling
Optimization
评价标准
Supervised: Low E-out or maximize probabilistic terms
Unsupervised: Minimum quantization error, Minimum
distance, MAP, MLE (Maximum Likelihood Estimation)
机器学习目标
E-in: for training set
E-out: for testing set
Under-fitting VS. Over-fitting (fixed N)
机器学习目标
error
(model = hypothesis + loss
functions)
机器学习目标
Components of generalization error
Bias: how much the average model over all training
sets differ from the true model?
Error due to inaccurate assumptions/simplifications made
by the model
Variance: how many models estimated from different
training sets differ from each other
机器学习目标
Under-fitting: model is too “simpleto represent all the
relevant class characteristics
High bias and low variance
High training error and high test error
Over-fitting: model is too “complexand fits irrelevant
characteristics (noise) in the data
Low bias and high variance
Low training error and high test error
机器学习目标
Models with too few parameters
are inaccurate because of a large
bias (not enough flexibility).
Models with too many parameters
are inaccurate because of a large
variance (too much sensitivity to
the sample).
摘要:

机器学习MachineLearning北京航空航天大学计算机学院SchoolofComputerScienceandEngineering,BeihangUniversity黄迪刘庆杰2018年秋季学期Fall2018部分内容来源于C.Bishop和A.NG等人的课程以及互联网资源第一章:机器学习概述(续)Chapter1:IntroductiontoMachineLearning训练和测试训练集(观测)通用数据集(非观测)测试集(非观测)数据获取实际运用Trainingistheprocessofmakingthesystemabletolearn.Nofreelunchrule:–Tr...

展开>> 收起<<
机器学习-黄迪2 线性回归.pdf

共86页,预览18页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:计算机 价格:5.9玖币 属性:86 页 大小:4.07MB 格式:PDF 时间:2025-01-13

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 86
客服
关注