022竖直面内圆周运动之绳”模型和“杆”模型及其临界问题 精讲精练-2022届高三物理一轮复习疑难突破微专题

VIP免费
2025-01-04 5 0 640.5KB 10 页 5.9玖币
侵权投诉
022 竖直面内圆周运动之绳”模型和“杆”模型及其临界问题
一.竖直面内的圆周运动——“绳”模型和“杆”模型
1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:
一是无支撑(如球与绳连接、沿内轨道运动的物体等),称为“绳(环)约束模型”;
二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”。
2.绳、杆模型涉及的临界问题
绳模型 杆模型
常见
类型
均是没有支撑的小球
均是有支撑的小球
受力
特征
除重力外,物体受到的弹力
向下或等于零
除重力外,物体受到的弹力向下、等于零
或向上
受力
示意图
过最高
点的临
界条件
mg
m
v
= 由小球恰能做圆周运动得
v
=0
讨论
分析
(1)
v
F
N
mg
m
,绳、圆轨道对球产生
弹力
F
N
(2)不能过最高点时,
v
<,在
到达最高点前小球已经脱离
了圆轨道
(1)
v
0 时
F
N
mg
F
N为支持力,沿
半径背离圆心
(2)当 0<
v
<时,
mg
F
N
m
F
N背离圆心,
v
的增大而减小
(3)当
v
=时,
F
N=0
(4)
v
>时,
F
N
mg
m
F
N指向圆心,并
v
的增大而增大
3.竖直面内圆周运动问题的解题思路
1 / 10
022 竖直面内圆周运动之绳”模型和“杆”模型及其临界问题
. 杆—球模型经典例题讲解与对点演练
(一)例题
1:一轻杆一端固定质量为 m的小球,以另一端 O为圆心,使小球在竖直面内做半径为 R
的圆周运动,如图所示,重力加速度为 g,则下列说法正确的是(  )
A.小球过最高点时,杆所受到的弹力可以等于零
B.小球过最高点的最小速度是
C.小球过最高点时,杆对球的作用力一定随速度增大而增大
D.小球过最高点时,杆对球的作用力一定随速度增大而减小
答案 A
析 最高弹力mgmv当速v杆所
受的弹力为零,所以 A正确.小球通过最高点的最小速度为零,所以 B错误.小球在最高点,
v<,则有:mgFm,轻杆的作用力随着速度的增大先减小后反向增大,若 v>,则有:
mgFm,轻杆的作用力随着速度增大而增大,所以 CD错误.
(二)杆—球模型对点演练
 
1.图所示,轻杆3L,在杆两端分别固定质量均为 mAB光滑水平转轴穿过杆
距球 ALO点,外界给系统一定能量后,杆和球在竖直平面内转动,球 B运动到最
点时,杆对球 B恰好无作用力.忽略空气阻力,重力加速度为 g,则球 B在最高点时(  )
A.球 B的速度为零
2 / 10
摘要:

022竖直面内圆周运动之绳”模型和“杆”模型及其临界问题一.竖直面内的圆周运动——“绳”模型和“杆”模型1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的物体等),称为“绳(环)约束模型”;二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”。2.绳、杆模型涉及的临界问题绳模型杆模型常见类型均是没有支撑的小球均是有支撑的小球受力特征除重力外,物体受到的弹力向下或等于零除重力外,物体受到的弹力向下、等于零或向上受力示意图过最高点的临界条件由mg=m得v临=由小球恰能做圆周运动得v临=0讨论分析(1)过最高点时,v...

展开>> 收起<<
022竖直面内圆周运动之绳”模型和“杆”模型及其临界问题 精讲精练-2022届高三物理一轮复习疑难突破微专题.doc

共10页,预览2页

还剩页未读, 继续阅读

声明:本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。玖贝云文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知玖贝云文库,我们立即给予删除!
分类:高等教育 价格:5.9玖币 属性:10 页 大小:640.5KB 格式:DOC 时间:2025-01-04

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 10
客服
关注